refnx: neutron and X-ray reflectometry analysis in Python

The refnx Python modules for neutron and X-ray reflectometry data analysis are introduced. A sample analysis illustrates a Bayesian approach using a Markov-chain Monte Carlo algorithm to understand the confidence in the fit parameters.

[1]  S. Clarke,et al.  Neutron Reflectometry for Studying Corrosion and Corrosion Inhibition , 2017 .

[2]  Birgit Schmidt,et al.  Positioning and Power in Academic Publishing: Players, Agents and Agendas, 20th International Conference on Electronic Publishing, Göttingen, Germany, June 7-9, 2016 , 2016, ELPUB.

[3]  Gabriella Andersson,et al.  GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution , 2007 .

[4]  I. Mandel,et al.  Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.

[5]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[6]  John R Helliwell,et al.  The science is in the data , 2017, IUCrJ.

[7]  Y. Gerelli Aurore: new software for neutron reflectivity data analysis , 2016 .

[8]  O. Heavens Optical properties of thin films — Where to? , 1978 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Stian Soiland-Reyes,et al.  Robust Cross-Platform Workflows: How Technical and Scientific Communities Collaborate to Develop, Test and Share Best Practices for Data Analysis , 2017, Data Science and Engineering.

[11]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[12]  Brigid Wilson,et al.  Implementing Reproducible Research , 2014 .

[13]  Dmitri I. Svergun,et al.  2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update , 2017, Acta crystallographica. Section D, Structural biology.

[14]  M. Lawrence,et al.  Structure of surfactant and phospholipid monolayers at the air/water interface modeled from neutron reflectivity data. , 2018, Journal of colloid and interface science.

[15]  A. Well,et al.  On the resolution and intensity of a time-of-flight neutron reflectometer , 2005 .

[16]  L. Nevot,et al.  Characterization of surfaces by grazing X-ray reflection: Application to the study of the polishing of various silicate glasses , 1991 .

[17]  A. Gibaud,et al.  X-ray and Neutron Reflectivity , 2009 .

[18]  M. Sansom,et al.  On the interpretation of reflectivity data from lipid bilayers in terms of molecular-dynamics models. , 2016, Acta crystallographica. Section D, Structural biology.

[19]  Philip B. Stark,et al.  Before reproducibility must come preproducibility , 2018, Nature.

[20]  L. Névot,et al.  Caractérisation des surfaces par réflexion rasante de rayons X. Application à l'étude du polissage de quelques verres silicates , 1980 .

[21]  Andrew Nelson,et al.  Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT , 2006 .

[22]  Brian Richard Pauw,et al.  Everything SAXS: small-angle scattering pattern collection and correction , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  C. Majkrzak NEUTRON REFLECTOMETRY STUDIES OF THIN FILMS AND MULTILAYERED MATERIALS , 1999 .

[24]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[25]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[26]  M. Lösche,et al.  A new lipid anchor for sparsely tethered bilayer lipid membranes. , 2009, Langmuir : the ACS journal of surfaces and colloids.