Tetravalent half-arc-transitive graphs of order 2pq

A graph is half-arc-transitive if its automorphism group acts transitively on vertices and edges, but not on arcs. It is known that for a prime p there is no tetravalent half-arc-transitive graphs of order p or p^2. Xu [M.Y. Xu, Half-transitive graphs of prime-cube order, J. Algebraic Combin. 1 (1992) 275-282] classified the tetravalent half-arc-transitive graphs of order p^3. As a continuation, we classify in this paper the tetravalent half-arc-transitive graphs of order p^4. It shows that there are exactly p-1 nonisomorphic connected tetravalent half-arc-transitive graphs of order p^4 for each odd prime p.

[1]  Cai Heng Li,et al.  On Half-Transitive Metacirculant Graphs of Prime-Power Order , 2001, J. Comb. Theory, Ser. B.

[2]  Cai Heng Li,et al.  Tetravalent edge-transitive Cayley graphs with odd number of vertices , 2006, J. Comb. Theory, Ser. B.

[3]  I. D. Macdonald,et al.  Two classes of metabelianp-groups , 1969 .

[4]  Cai Heng Li On isomorphisms of connected Cayley graphs , 1998, Discret. Math..

[5]  Derek F. Holt,et al.  A graph which is edge transitive but not arc transitive , 1981, J. Graph Theory.

[6]  Du Shaofei VERTEX-PRIMITIVE 1/2-TRANSITIVE GRAPHS , 1996 .

[7]  László Babai,et al.  Isomorphism problem for a class of point-symmetric structures , 1977 .

[8]  Ming-Yao Xu,et al.  Automorphism groups and isomorphisms of Cayley digraphs , 1998, Discret. Math..

[9]  Yan-Quan Feng,et al.  Constructing even radius tightly attached half-arc-transitive graphs of valency four , 2007 .

[10]  Mingyao Xu,et al.  Vertex-primitive ½-arc-transitive graphs of smallest order , 1999 .

[11]  Yan-Quan Feng,et al.  Hexavalent half-arc-transitive graphs of order 4p , 2009, Eur. J. Comb..

[12]  C. Chao On the classification of symmetric graphs with a prime number of vertices , 1971 .

[13]  Dragan Marusic,et al.  Constructing 1/2-arc-transitive graphs of valency 4 and vertex stabilizer Z2×Z2 , 2002, Discret. Math..

[14]  Walter Feit,et al.  Finite Simple Groups , 1983 .

[15]  Dragan Marušič,et al.  Partial line graph operator and half-arc-transitive group actions , 2001 .

[16]  B. Alspach,et al.  1/2-Transitive Graphs of Order 3p , 1994 .

[17]  Yan-Quan Feng,et al.  An infinite family of tetravalent half-arc-transitive graphs , 2006, Discret. Math..

[18]  Norman Biggs Algebraic Graph Theory: Index , 1974 .

[19]  Mateja Sajna,et al.  Half-transitivity of some metacirculants , 1998, Discret. Math..

[20]  Dragan Marusic,et al.  A tetravalent half-arc-transitive graph with non-abelian vertex stabilizer , 2003, J. Comb. Theory, Ser. B.

[21]  Yan-Quan Feng,et al.  There exists no tetravalent half-arc-transitive graph of order 2p2 , 2010, Discret. Math..

[22]  I. Bouwer Vertex and Edge Transitive, but not 1-Transitive, Graphs , 1970, Canadian Mathematical Bulletin.

[23]  Dragan Marusic,et al.  Maps and Half-transitive Graphs of Valency 4 , 1998, Eur. J. Comb..

[24]  Mingyao Xu Half-Transitive Graphs of Prime-Cube Order , 1992 .

[25]  Kaishun Wang,et al.  Tetravalent half-transitive graphs of order 4p , 2007, Eur. J. Comb..

[26]  D. Marusic,et al.  On quartic half-arc-transitive metacirculants , 2007, math/0702183.

[27]  Mingyao Xu,et al.  On the Normality of Cayley Graphs of Abelian Groups , 1998 .

[28]  J. Kwak,et al.  AUTOMORPHISM GROUPS OF 4-VALENT CONNECTED CAYLEY GRAPHS OF p-GROUPS , 2001 .

[29]  Caiheng Li,et al.  On primitive permutation groups with small suborbits and their orbital graphs , 2004 .

[30]  W. T. Tutte Connectivity in graphs , 1966 .

[31]  Primoz Sparl A classification of tightly attached half-arc-transitive graphs of valency 4 , 2008, J. Comb. Theory, Ser. B.

[32]  Dragan Marusic,et al.  Constructing 4-Valent 1/2-Transitive Graphs with a Nonsolvable Automorphism Group , 1999, J. Comb. Theory, Ser. B.

[33]  D. E. Taylor,et al.  Vertex-primitive half-transitive graphs , 1994, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[34]  Cai Heng Li,et al.  On edge-transitive Cayley graphs of valency four , 2004, Eur. J. Comb..

[35]  Dragan Marusic,et al.  Half-transitive graphs of valency 4 with prescribed attachment numbers , 2000, J. Graph Theory.

[36]  Dragan Marušič,et al.  Finite graphs of valency 4 and girth 4 admitting half-transitive group actions , 2002, Journal of the Australian Mathematical Society.

[37]  B. Alspach,et al.  Constructing graphs which are ½-transitive , 1994 .

[38]  D. Robinson A Course in the Theory of Groups , 1982 .

[39]  Dragan Marusic,et al.  Half-Transitive Group Actions on Finite Graphs of Valency 4 , 1998, J. Comb. Theory, Ser. B.

[40]  Ying Cheng,et al.  On weakly symmetric graphs of order twice a prime , 1987, J. Comb. Theory, Ser. B.

[41]  Dragan Marušič,et al.  A 1/2-transitive graph of valency 4 with a nonsolvable group of automorphisms , 1997 .

[42]  Ru-Ji Wang Half-transitive graphs of order a product of two distinct primes * , 1994 .

[43]  Cheryl E. Praeger,et al.  Tetravalent Graphs Admitting Half-Transitive Group Actions: Alternating Cycles , 1999, J. Comb. Theory, Ser. B.