Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates.

[1]  M. Mayo,et al.  Improved synthesis of the bifunctional chelating agent 1,4,7,10-tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N',N'',N'''-tri s(acetic acid)cyclododecane (PA-DOTA). , 1999, Bioorganic & medicinal chemistry.

[2]  S. Kennel,et al.  Improved in vivo stability of actinium-225 macrocyclic complexes. , 1999, Journal of medicinal chemistry.

[3]  M. Brechbiel,et al.  In vivo evaluation of a lead-labeled monoclonal antibody using the DOTA ligand , 1998, European Journal of Nuclear Medicine.

[4]  G. Henriksen,et al.  ISOLATION OF CYCLOTRON PRODUCED 205BI, 206BI AND 203PB USING A LEAD-SELECTIVE EXTRACTION CHROMATOGRAPHIC RESIN , 1998 .

[5]  G. Denardo,et al.  New anti-Cu-TETA and anti-Y-DOTA monoclonal antibodies for potential use in the pre-targeted delivery of radiopharmaceuticals to tumor. , 1998, Hybridoma.

[6]  T. Waldmann,et al.  Radioimmunotherapy targeting of HER2/neu oncoprotein on ovarian tumor using lead-212-DOTA-AE1. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[7]  M. Brechbiel,et al.  Lead(II) complexes of 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetate: solution chemistry and application to tumor localization with 203Pb labeled monoclonal antibodies , 1995 .

[8]  J. Shively,et al.  A facile, water-soluble method for modification of proteins with DOTA. Use of elevated temperature and optimized pH to achieve high specific activity and high chelate stability in radiolabeled immunoconjugates. , 1994, Bioconjugate chemistry.

[9]  C. Anderson,et al.  Initial comparison of Cu-67-and Cu-64-labeled anti-colorectal carcinoma Mab 1A3 as agents for radioimmunotherapy in tumor-bearing hamsters , 1994 .

[10]  M. Brechbiel,et al.  Spectrophotometric method for the determination of a bifunctional DTPA ligand in DTPA-monoclonal antibody conjugates. , 1992, Bioconjugate chemistry.

[11]  M. Brechbiel,et al.  Convenient synthesis of bifunctional tetraaza macrocycles. , 1992, Bioconjugate chemistry.

[12]  R. Delgado,et al.  The stability of the metal complexes of cyclic tetra-aza tetra-acetic acids. , 1992, Talanta.

[13]  T. Waldmann,et al.  Monoclonal antibodies in diagnosis and therapy , 1991, Science.

[14]  J. Schlom,et al.  Monoclonal antibody-based therapy of a human tumor xenograft with a 177lutetium-labeled immunoconjugate. , 1991, Cancer research.

[15]  S. Denardo,et al.  Macrocyclic chelates of radiometals for diagnosis and therapy. , 1990, The British journal of cancer. Supplement.

[16]  M. Welch,et al.  A new bifunctional chelate, BrMe2HBED : an effective conjugate for radiometals and antibodies , 1990 .

[17]  S. Denardo,et al.  Copper chelates as probes of biological systems: stable copper complexes with a macrocyclic bifunctional chelating agent. , 1985, Analytical biochemistry.

[18]  C. Meares,et al.  Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. , 1984, Analytical biochemistry.

[19]  G. Krejcarek,et al.  Covalent attachment of chelating groups to macromolecules. , 1977, Biochemical and biophysical research communications.

[20]  S. B. Savvin Analytical use of arsenazo III: Determination of thorium, zirconium, uranium and rare earth elements , 1961 .