Clonal origins of ETV6-RUNX1+ acute lymphoblastic leukemia: studies in monozygotic twins

[1]  Leslie L Robison,et al.  Acute lymphoblastic leukaemia , 2018, Radiopaedia.org.

[2]  M. Greaves,et al.  Evolutionary trajectories of hyperdiploid ALL in monozygotic twins , 2014, Leukemia.

[3]  M. Stratton,et al.  RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia , 2014, Nature Genetics.

[4]  P. Campbell,et al.  Single-cell mutational profiling and clonal phylogeny in cancer , 2013, Genome research.

[5]  R. Houlston,et al.  Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia , 2013, Proceedings of the National Academy of Sciences.

[6]  C. Lobe,et al.  Initially disadvantaged, TEL-AML1 cells expand and initiate leukemia in response to irradiation and cooperating mutations , 2013, Leukemia.

[7]  V. Carlton,et al.  Massive evolution of the immunoglobulin heavy chain locus in children with B precursor acute lymphoblastic leukemia. , 2012, Blood.

[8]  E. Schuuring,et al.  EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations , 2012, Leukemia.

[9]  A. Ashworth,et al.  A Modified Method for Whole Exome Resequencing from Minimal Amounts of Starting DNA , 2012, PloS one.

[10]  Louise S. Matheson,et al.  Modeling the evolution of ETV6-RUNX1-induced B-cell precursor acute lymphoblastic leukemia in mice. , 2011, Blood.

[11]  K. Anderson,et al.  Genetic variegation of clonal architecture and propagating cells in leukaemia , 2011, Nature.

[12]  M. Greaves,et al.  Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. , 2010, Blood.

[13]  K. Anderson,et al.  Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. , 2009, Blood.

[14]  S. Orkin,et al.  TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. , 2009, Cell stem cell.

[15]  M. Lieber,et al.  Human Chromosomal Translocations at CpG Sites and a Theoretical Basis for Their Lineage and Stage Specificity , 2008, Cell.

[16]  B. Schäfer,et al.  Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia , 2008, Leukemia.

[17]  T. Enver,et al.  Initiating and Cancer-Propagating Cells in TEL-AML1-Associated Childhood Leukemia , 2008, Science.

[18]  J. Cayuela,et al.  Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data , 2007, Leukemia.

[19]  M. Reinders,et al.  Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression , 2006, The Journal of Immunology.

[20]  M. Greaves,et al.  Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model , 2005, Oncogene.

[21]  K. Anderson,et al.  Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia , 2005, Nature Medicine.

[22]  S. Orkin,et al.  Developmental stage–selective effect of somatically mutated leukemogenic transcription factor GATA1 , 2005, Nature Genetics.

[23]  R. Pieters,et al.  Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells. , 2005, Cancer research.

[24]  M. Dettling,et al.  Prenatal origin of separate evolution of leukemia in identical twins , 2004, Leukemia.

[25]  B. Nadel,et al.  Unraveling the Consecutive Recombination Events in the Human IGK Locus1 , 2004, The Journal of Immunology.

[26]  M. Greaves,et al.  Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M Hummel,et al.  Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936 , 2003, Leukemia.

[28]  M. Greaves,et al.  Leukemia in twins: lessons in natural history. , 2003, Blood.

[29]  J. Dongen,et al.  Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease , 2003, Leukemia.

[30]  M. Greaves,et al.  Origins of chromosome translocations in childhood leukaemia , 2003, Nature Reviews Cancer.

[31]  Fritz Melchers,et al.  A genomic view of lymphocyte development. , 2003, Current opinion in immunology.

[32]  J. Harbott,et al.  Immature CD34+CD19- progenitor/stem cells in TEL/AML1-positive acute lymphoblastic leukemia are genetically and functionally normal. , 2002, Blood.

[33]  M. Greaves,et al.  Chromosome translocations and covert leukemic clones are generated during normal fetal development , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Greaves,et al.  Prenatal origin of acute lymphoblastic leukaemia in children , 1999, The Lancet.

[35]  M. Greaves,et al.  Structure and possible mechanisms of TEL-AML1 gene fusions in childhood acute lymphoblastic leukemia. , 1999, Cancer research.

[36]  T. Szczepański,et al.  Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease , 1999, Leukemia.

[37]  M. Greaves,et al.  Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E. Macintyre,et al.  High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. , 1995, Blood.

[39]  M. Greaves,et al.  Rapid intraclonal switch of lineage dominance in congenital leukaemia with a MLL gene rearrangement. , 1995, Leukemia.

[40]  T. Lister,et al.  Relation of “lymphoid” phenotype and response to chemotherapy incorporating vincristine‐prednisolone in the acute phase of Ph1 positive leukemia , 1979, Cancer.

[41]  F. L. Stanton,et al.  Identical Twins , 1927, Edinburgh Medical Journal.

[42]  A. Hall,et al.  Genomic analysis of different clonal evolution in a twin pair with t(12;21) positive acute lymphoblastic leukemia sharing the same prenatal clone , 2008, Leukemia.

[43]  M. Schrappe,et al.  High incidence and unique features of antigen receptor gene rearrangements in TEL–AML1-positive leukemias , 2004, Leukemia.

[44]  J. Dongen,et al.  GENE REARRANGEMENTS ARE FREQUENT IN PRECURSOR-B-ACUTE LYMPHOBLASTIC LEUKEMIA BUT RARE IN NORMAL LYMPHOID CELLS , 2003 .

[45]  M. Tristem Molecular Evolution — A Phylogenetic Approach. , 2000, Heredity.