The Discontinuous Petrov-Galerkin methodology for the mixed Multiscale Finite Element Method

Abstract We present the application of the Discontinuous Petrov–Galerkin (DPG) methodology for the mixed Multiscale Finite Element Method (MsFEM). The MsFEM upscaling technique relies on incorporating fine-scale features through special, in a sense optimized for approximability, trial functions while the DPG methodology allows for the selection of the optimal test functions to provide stability of the FEM approximation. The special trial functions are computed online by the solution of local boundary value problems. We improved this process using the static condensation that restricted the construction of the functions to the coarse mesh skeleton (element interfaces) only. We have verified by numerical tests that the proposed improvement of MsFEM reduced both the approximation error and computational cost. Moreover, it simplified the algorithm significantly. The key component of this prolongation construction is our novel method for prolongation of both traction and displacement vectors on element edges of arbitrary shape. The proposed prolongation operator may be also used in the multigrid solver for direct analysis of composites with varying material parameters, using an arbitrary well-posed functional setting with or without the DPG methodology.

[1]  A. Brandt,et al.  The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .

[2]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[3]  Kai Gao,et al.  A high-order multiscale finite-element method for time-domain acoustic-wave modeling , 2018, J. Comput. Phys..

[4]  C. Bottasso,et al.  The discontinuous Petrov–Galerkin method for elliptic problems , 2002 .

[5]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[6]  T. Arbogast Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow , 2002 .

[7]  Yalchin Efendiev,et al.  Mixed Multiscale Finite Element Methods Using Limited Global Information , 2008, Multiscale Model. Simul..

[8]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[9]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Space Based on Homogenization for Heterogeneous Elliptic Problems , 2013, SIAM J. Numer. Anal..

[10]  L. Demkowicz,et al.  The DPG methodology applied to different variational formulations of linear elasticity , 2016, 1601.07937.

[11]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[12]  David Moulton,et al.  Multilevel Upscaling in Heterogeneous Porous Media , 2004 .

[13]  Ernst Rank,et al.  Normal contact with high order finite elements and a fictitious contact material , 2015, Comput. Math. Appl..

[14]  Weifeng Qiu,et al.  An analysis of the practical DPG method , 2011, Math. Comput..

[15]  H. Boffy,et al.  Multigrid Solution of the 3D stress field in strongly heterogeneous materials , 2014 .

[16]  R Hoekema,et al.  Multigrid solution of the potential field in modeling electrical nerve stimulation. , 1998, Computers and biomedical research, an international journal.

[17]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[18]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[19]  Eric T. Chung,et al.  Least-squares mixed generalized multiscale finite element method , 2016 .

[20]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[21]  W. Cecot,et al.  Estimation of computational homogenization error by explicit residual method , 2014, Comput. Math. Appl..

[22]  Thomas Fuhrer Superconvergence in a DPG method for an ultra-weak formulation , 2017, 1707.06979.

[23]  J. Fish,et al.  Multi-grid method for periodic heterogeneous media Part 2: Multiscale modeling and quality control in multidimensional case , 1995 .

[24]  W. Cecot,et al.  High order FEM for multigrid homogenization , 2015, Comput. Math. Appl..

[25]  Carsten Carstensen,et al.  Breaking spaces and forms for the DPG method and applications including Maxwell equations , 2015, Comput. Math. Appl..

[26]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[27]  W. Cecot,et al.  An adaptive MsFEM for nonperiodic viscoelastic composites , 2018 .

[28]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[29]  Yalchin Efendiev,et al.  Multiscale finite element methods for porous media flows and their applications , 2007 .

[30]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[31]  Hong-wu Zhang,et al.  Extended multiscale finite element method for mechanical analysis of heterogeneous materials , 2010 .

[32]  Hongwu Zhang,et al.  A new multiscale computational method for elasto-plastic analysis of heterogeneous materials , 2012 .

[33]  Jacob Fish,et al.  Multiscale enrichment based on partition of unity , 2005 .

[34]  E. Wilson The static condensation algorithm , 1974 .

[35]  Mgd Marc Geers,et al.  Multi-scale computational homogenization , 2002 .

[36]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[37]  Paola Causin,et al.  A Discontinuous Petrov-Galerkin Method with Lagrangian Multipliers for Second Order Elliptic Problems , 2005, SIAM J. Numer. Anal..

[38]  J. Hyman,et al.  The Black Box Multigrid Numerical Homogenization Algorithm , 1998 .