Elastic properties of MgxTi1−xB2(0⩽x⩽1)studied by first-principles calculations

Elastic properties of MgxTi1−xB2(0 x 1) studied by first-principles calculations David Groh,1 William J. Slough,1 Ravindra Pandey,1,* Shashi P. Karna,2 and Dattatraya Dandekar2,† 1Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA 2US Army Research Laboratory, Weapons and Materials Research Directorate, AMSRD-ARL-WM, Aberdeen Proving Ground, Maryland 21005, USA (Received 27 October 2010; revised manuscript received 25 January 2011; published 15 March 2011)

[1]  D. Dandekar Shear Strength of Titanium Diboride under Shock Wave and Static Compressions , 2010 .

[2]  H. Ledbetter,et al.  Elastic-Stiffness Coefficients of Titanium Diboride , 2009, Journal of research of the National Institute of Standards and Technology.

[3]  Bartolomeo Civalleri,et al.  Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code , 2009, Comput. Phys. Commun..

[4]  I. Baraille,et al.  First-principles study of the optical properties of BeO in its ambient and high-pressure phases , 2009 .

[5]  K. Lau,et al.  Structure and stability of Mg-intercalated boron nanotubes and crystalline bundles , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  M. Pękała,et al.  Temperature-dependent pseudogap-like features in tunnel spectra of high-Tc cuprates as a manifestation of charge-density waves , 2008 .

[7]  Martin Ostoja-Starzewski,et al.  Universal elastic anisotropy index. , 2008, Physical review letters.

[8]  A. L. Ivanovskii,et al.  Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations , 2008, 0804.0897.

[9]  Roberto Orlando,et al.  First-principles study of the structural, electronic, and optical properties of Ga 2 O 3 in its monoclinic and hexagonal phases , 2006 .

[10]  R. Steiger,et al.  Sintering and Properties of Titanium Diboride Made from Powder Synthesized in a Plasma‐Arc Heater , 2006 .

[11]  K. Chandran,et al.  Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory , 2006 .

[12]  M. Somayazulu,et al.  Application of radial x-ray diffraction to determine the hydrostatic equation of state and strength of TiB2 up to 60GPa , 2006 .

[13]  M. Kilburn,et al.  Chemical interactions in Ti doped MgB2 superconducting bulk samples and wires , 2005 .

[14]  Chen Xiang-rong,et al.  First-Principles Calculations of Elastic Constants of Superconducting MgB2 , 2005 .

[15]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .

[16]  M. Manghnani,et al.  Compression studies of TiB2 using synchrotron x-ray diffraction and ultrasonic techniques , 2005 .

[17]  R. Orlando,et al.  First-principles study of the electronic structure of PbF2 in the cubic, orthorhombic, and hexagonal phases , 2004 .

[18]  M. Murakami,et al.  Nanoparticle structure of MgB2 with ultrathin TiB2 grain boundaries , 2002 .

[19]  F. Islam,et al.  Ab initio investigation of elastic constants of superconducting MgB2 , 2001 .

[20]  M. Murakami,et al.  High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure , 2001 .

[21]  S. Dodd,et al.  Ultrasonic determination of the temperature and hydrostatic pressure dependences of the elastic properties of ceramic titanium diboride , 2001 .

[22]  V. Milman,et al.  Elastic properties of TiB2 and MgB2 , 2001 .

[23]  P. Vajeeston,et al.  Detailed electronic structure studies on superconducting MgB 2 and related compounds , 2001, cond-mat/0104253.

[24]  H. Mao,et al.  Raman spectrum and lattice parameters of MgB2 as a function of pressure , 2001, cond-mat/0104042.

[25]  T. Vogt,et al.  Compressibility and electronic structure of MgB 2 up to 8 GPa , 2001, cond-mat/0102480.

[26]  K. Syassen,et al.  Calculated elastic and electronic properties of MgB2 at high pressures , 2001, cond-mat/0102462.

[27]  Ponniah Vajeeston,et al.  Electronic structure, bonding, and ground-state properties of AlB 2 -type transition-metal diborides , 2001 .

[28]  R. Pandey,et al.  A theoretical study of stability, electronic, and optical properties of GeC and SnC , 2000 .

[29]  R. Munro Material Properties of Titanium Diboride , 2000, Journal of research of the National Institute of Standards and Technology.

[30]  C. Perottoni,et al.  Periodic Hartree-Fock linear combination of crystalline orbitals calculation of the structure, equation of state and elastic properties of titanium diboride , 2000 .

[31]  R. Brydson,et al.  Band structure of TiB 2 : Orientation-dependent EELS near-edge fine structure and the effect of the core hole at the B K edge , 1999 .

[32]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[33]  P. Zapol,et al.  Theoretical study of nonpolar surfaces of aluminum nitride: Zinc blende (110) and wurtzite (101-|Am0) , 1997 .

[34]  Julian D. Maynard,et al.  Elastic constants and crystal anisotropy of titanium diboride , 1997 .

[35]  Mauro Causà,et al.  The high-pressure phase transitions of silicon and gallium nitride: a comparative study of Hartree - Fock and density functional calculations , 1996 .

[36]  P. V. Camp,et al.  Ground state properties of titaniumdiboride , 1995 .

[37]  S. Wright Estimation of single-crystal elastic constants from textured polycrystal measurements , 1994 .

[38]  D. Dandekar,et al.  Strength of titanium diboride under shock wave loading , 1993 .

[39]  D. Tian,et al.  Electronic structure and equation of state of TiB2 , 1992 .

[40]  Anil K. Singh,et al.  Recent trends in high pressure research : proceedings of the XIII AIRAPT International Conference on High Pressure Science and Technology, 7-11 October 1991 , 1992 .

[41]  R. Andrievski,et al.  Temperature dependence of the Young's modulus of the composite TiB2-Fe , 1991 .

[42]  Stephen C. Cowin,et al.  PROPERTIES OF THE ANISOTROPIC ELASTICITY TENSOR , 1989 .

[43]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[44]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[45]  P. Becher,et al.  Effect of residual nickel content on the grain size dependent mechanical properties of TiB2 , 1986 .

[46]  P. Becher,et al.  Effect of Microstructure on the Properties of TiB2 Ceramics , 1983 .

[47]  J. Gurland,et al.  Science of Hard Materials , 1983 .

[48]  J. Robertson Boron and refractory borides edited by V. I. Matkovich , 1979 .

[49]  W. Gust,et al.  Dynamic yield, compressional, and elastic parameters for several lightweight intermetallic compounds. , 1973 .

[50]  O. Hunter,et al.  Elastic properties of polycrystalline TiB2, ZrB2 and HfB2 from room temperature to 1300 °K☆ , 1969 .

[51]  F. W. Vahldiek,et al.  Anisotropy in Single-Crystal Refractory Compounds , 1968 .

[52]  A. Silver,et al.  Nuclear Magnetic Resonance in Transition‐Metal Diborides , 1963 .

[53]  J. Gilman,et al.  Elastic Constants of TiC and TiB2 , 1961 .

[54]  Richard E. Marsh,et al.  The Preparation and Structure of Magnesium Boride, MgB2 , 1954 .