Broadband Optical Antireflection Enhancement by Integrating Antireflective Nanoislands with Silicon Nanoconical‐Frustum Arrays

Based on conventional colloidal nanosphere lithography, we experimentally demonstrate novel graded-index nanostructures for broadband optical antireflection enhancement including the near-ultraviolet (NUV) region by integrating residual polystyrene antireflective (AR) nanoislands coating arrays with silicon nano-conical-frustum arrays. This is a feasible optimized integration method of two major approaches for antireflective surfaces: quarter-wavelength AR coating and biomimetic moth's eye structure.

[1]  A. Gawlik,et al.  Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. , 2009, Nano letters.

[2]  Witold Kandulski,et al.  Shadow Nanosphere Lithography , 2007 .

[3]  S. Chua,et al.  Fabrication of a nano-cone array on a p-GaN surface for enhanced light extraction efficiency from GaN-based tunable wavelength LEDs , 2008, Nanotechnology.

[4]  E. F. Schubert,et al.  Light‐Extraction Enhancement of GaInN Light‐Emitting Diodes by Graded‐Refractive‐Index Indium Tin Oxide Anti‐Reflection Contact , 2008 .

[5]  Michael Giersig,et al.  Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. , 2005, Small.

[6]  J. Shieh,et al.  Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle. , 2010, Nanoscale.

[7]  U. Steiner,et al.  Nanophase-separated polymer films as high-performance antireflection coatings , 1999, Science.

[8]  L. Coldren,et al.  Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption. , 2010, Optics express.

[9]  P. Nealey,et al.  Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers. , 2011, ACS nano.

[10]  Arthur Weeber,et al.  Bulk and surface passivation of silicon solar cells accomplished by silicon nitride deposited on industrial scale by microwave PECVD , 2005 .

[11]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[12]  Weidong Zhou,et al.  Microstructured surface design for omnidirectional antireflection coatings on solar cells , 2007 .

[13]  Chang‐Hwan Choi,et al.  Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control , 2006 .

[14]  Bai Yang,et al.  Antireflective surfaces based on biomimetic nanopillared arrays , 2010 .

[15]  Hongyu Yu,et al.  Texturing of crystalline Si thin film solar cells via nanostructure to boost efficiency , 2011 .

[16]  Joachim P Spatz,et al.  Biomimetic interfaces for high-performance optics in the deep-UV light range. , 2008, Nano letters.

[17]  Amit Lal,et al.  High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. , 2010, Nano letters.

[18]  Subhendu Guha,et al.  Amorphous and nanocrystalline silicon-based multi-junction solar cells , 2005 .

[19]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[20]  C. L. Cheung,et al.  Fabrication of nanopillars by nanosphere lithography , 2006 .

[21]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[22]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[23]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[24]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[25]  Markus Pollnau,et al.  Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon , 2007 .