Advanced Technology Large-Aperture Space Telescope: science drivers and technology developments

The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5-μm wavelength, minimum collecting area of 45  m2, high sensitivity to light wavelengths from 0.1 to 2.4 μm, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

[1]  W. Traub,et al.  A laboratory demonstration of the capability to image an Earth-like extrasolar planet , 2007, Nature.

[2]  Troy W. Barbee,et al.  Development of nanolaminate thin-shell mirrors , 2002, SPIE Astronomical Telescopes + Instrumentation.

[3]  G Rousset,et al.  Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics. , 2004, Optics letters.

[4]  H. Philip Stahl,et al.  Survey of cost models for space telescopes , 2010 .

[5]  Stephen Unwin,et al.  Science with an 8-meter to 16-meter optical/UV space telescope , 2008, Astronomical Telescopes + Instrumentation.

[6]  Beth Willman,et al.  A common mass scale for satellite galaxies of the Milky Way , 2008, Nature.

[7]  Kenneth Sembach Astro2010 Technology Development White Paper Technology Investments to Meet the Needs of Astronomy at Ultraviolet Wavelengths in , 2010 .

[8]  B. Savage,et al.  O vi ABSORBERS TRACING HOT GAS ASSOCIATED WITH A PAIR OF GALAXIES AT z = 0.167 , 2010, 1007.0772.

[9]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[10]  L. Loinard,et al.  Motions of Galaxies in the Local Group and Beyond , 2009, 0902.3932.

[11]  Lee D. Feinberg,et al.  ATLAST-9.2m: a large-aperture deployable space telescope , 2010, Astronomical Telescopes + Instrumentation.

[12]  Michael Shao,et al.  The Occurrence Rate of Earth Analog Planets Orbiting Sunlike Stars , 2011 .

[13]  Eric Schindhelm,et al.  White-light demonstration of one hundred parts per billion irradiance suppression in air by new starshade occulters , 2007, SPIE Optical Engineering + Applications.

[14]  Aki Roberge,et al.  A starshade for JWST: science goals and optimization , 2009, Optical Engineering + Applications.

[15]  H. Philip Stahl,et al.  Design for an 8-meter monolithic UV/OIR space telescope , 2009, Optical Engineering + Applications.

[16]  Wesley A. Traub,et al.  TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER , 2011, 1109.4682.

[17]  K. Kuijken,et al.  3-D kinematics in low foreground extinction windows of the Galactic bulge† , 2007, Proceedings of the International Astronomical Union.

[18]  A. Quirrenbach,et al.  Worlds Beyond: A Strategy for the Detection and Characterization of Exoplanets , 2008, 0808.2754.

[19]  Marc Postman,et al.  The History of Star Formation in Galaxies , 2009, 1209.4141.

[20]  N. M. Milton,et al.  Performance Modeling of a Wide‐Field Ground‐Layer Adaptive Optics System , 2006, astro-ph/0610097.

[21]  Thomas A. Sebring,et al.  Development of lightweight stiff stable replicated glass mirrors for the Cornell Caltech Atacama Telescope (CCAT) , 2006, SPIE Astronomical Telescopes + Instrumentation.

[22]  H. Philip Stahl,et al.  ATLAST-8 Mission concept study for 8-meter monolithic UV/optical space telescope , 2010, Astronomical Telescopes + Instrumentation.

[23]  B. Mennesson,et al.  Exoplanet Characterization and the Search for Life , 2009, 0911.2936.

[24]  Robert A. Simcoe,et al.  The Cosmic Web , 2004 .

[25]  Andrei Tokovinin,et al.  Seeing Improvement with Ground‐Layer Adaptive Optics , 2004 .

[26]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[27]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[28]  Rocco Samuele,et al.  The New Worlds Observer: the astrophysics strategic mission concept study , 2009, Optical Engineering + Applications.

[29]  Olivier Guyon,et al.  Comparison of optical observational capabilities for the coming decades: ground versus space , 2009 .

[30]  H. Philip Stahl,et al.  Preliminary multivariable cost model for space telescopes , 2010, Astronomical Telescopes + Instrumentation.

[31]  Dominic Benford,et al.  A New Era in Extragalactic Background Light Measurements: The Cosmic History of Accretion, Nucleosynthesis and Reionization , 2009, 0902.2372.

[32]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[33]  K. Dolag,et al.  Numerical Simulations of the Warm-Hot Intergalactic Medium , 2008, 0801.1039.

[34]  Lee D. Feinberg,et al.  Comparative concepts for ATLAST optical designs , 2010, Astronomical Telescopes + Instrumentation.

[35]  O. Guyon Limits of Adaptive Optics for High-Contrast Imaging , 2005, astro-ph/0505086.

[36]  A. Glindemann,et al.  Multi-Conjugate Adaptive Optics with Two Deformable Mirrors – Requirements and Performance , 2001 .

[37]  O. Guyon,et al.  High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation , 2009, 0911.1307.

[38]  Manoj Kaplinghat,et al.  Determining the Nature of Dark Matter with Astrometry , 2007, astro-ph/0701581.

[39]  Mark Clampin,et al.  Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade , 2009 .

[40]  Ultraviolet Astronomy Beyond 2020 , 2009 .

[41]  Brian J. Bauman,et al.  First results from the UCSC Laboratory for Adaptive Optics multi-conjugate and multi-object adaptive optics testbed , 2006, SPIE Astronomical Telescopes + Instrumentation.