Structure from Motion: A New Look from the Point of View of Invariant Theory

We present a novel, simple formulation of the problem of 3D object reconstruction from images. In this formulation, the object is seen as lying at the intersection of the projection of orbits of custom built Lie groups actions. The group parameters correspond to unknown, irrelevant quantities such as the camera orientation, the depth parameters of the object with respect to the camera and the focal length. We then use an algorithmic method based on moving frames à la Fels-Olver to obtain a fundamental set of invariants of these groups actions. The invariants are used to define a set of equations determining the 3D object, thus providing a mathematical formulation of the problem where the irrelevant parameters do not appear.

[1]  A. L. Onishchik,et al.  Foundations of Lie theory ; Lie transformation groups , 1993 .

[2]  Kenichi Kanatani Gauge-based reliability analysis of 3D reconstruction from two uncalibrated perspective views , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[3]  William H. Press,et al.  Numerical recipes in C , 2002 .

[4]  P. Olver Classical Invariant Theory , 1999 .

[5]  E. Cartan,et al.  Leçons sur la géométrie projective complexe , 1950 .

[6]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[7]  Edward M. Riseman,et al.  The non-existence of general-case view-invariants , 1992 .

[8]  Mireille Boutin On orbit dimensions under a simultaneous Lie group action on n copies of a manifold , 2000 .

[9]  Andrew Zisserman,et al.  Proceedings of the Second Joint European - US Workshop on Applications of Invariance in Computer Vision , 1993 .

[10]  Isaac Weiss 3-D curve reconstruction from uncalibrated cameras , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[11]  P. Olver,et al.  Moving Coframes: I. A Practical Algorithm , 1998 .

[12]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[13]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[14]  E. Cartan,et al.  Leçons sur la géométrie projective complexe ; La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile ; Leçons sur la théorie des espaces à connexion projective , 1992 .

[15]  Pierre-Louis Bazin,et al.  Tracking geometric primitives in video streams , 2000 .

[16]  Long Quan,et al.  Invariants of Six Points and Projective Reconstruction From Three Uncalibrated Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[18]  Joshua A. Leslie,et al.  The Geometrical Study of Differential Equations , 2001 .

[19]  Emanuele Trucco,et al.  Geometric Invariance in Computer Vision , 1995 .

[20]  Irina A. Kogan,et al.  Inductive Construction of Moving Frames , 2006 .

[21]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[22]  Gunnar Sparr,et al.  Euclidean and Affine Structure/Motion for Uncalibrated Cameras from Affine Shape and Subsidiary Information , 1998, SMILE.

[23]  Carsten Rother,et al.  Linear Multi View Reconstruction and Camera Recovery , 2001, ICCV.