Gifted microbes for genome mining and natural product discovery

Actinomycetes are historically important sources for secondary metabolites (SMs) with applications in human medicine, animal health, and plant crop protection. It is now clear that actinomycetes and other microorganisms with large genomes have the capacity to produce many more SMs than was anticipated from standard fermentation studies. Indeed ~90 % of SM gene clusters (SMGCs) predicted from genome sequencing are cryptic under conventional fermentation and analytical analyses. Previous studies have suggested that among the actinomycetes with large genomes, some have the coding capacity to produce many more SMs than others, and that strains with the largest genomes tend to be the most gifted. These contentions have been evaluated more quantitatively by antiSMASH 3.0 analyses of microbial genomes, and the results indicate that many actinomycetes with large genomes are gifted for SM production, encoding 20–50 SMGCs, and devoting 0.8–3.0 Mb of coding capacity to SM production. Several Proteobacteria and Firmacutes with large genomes encode 20–30 SMGCs and devote 0.8–1.3 Mb of DNA to SM production, whereas cultured bacteria and archaea with small genomes devote insignificant coding capacity to SM production. Fully sequenced genomes of uncultured bacteria and archaea have small genomes nearly devoid of SMGCs.

[1]  Tilmann Weber,et al.  The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production , 2016, Synthetic and systems biotechnology.

[2]  N. Kyrpides,et al.  Complete genome sequence of Thermobispora bispora type strain (R51T) , 2010, Standards in genomic sciences.

[3]  Andriy Luzhetskyy,et al.  Insights into naturally minimised Streptomyces albus J1074 genome , 2014, BMC Genomics.

[4]  P. D’haeseleer,et al.  Complete genome sequence of Saccharomonospora viridis type strain (P101T) , 2009, Standards in genomic sciences.

[5]  Richard H. Baltz,et al.  Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes , 2016, Journal of Industrial Microbiology & Biotechnology.

[6]  Victor Markowitz,et al.  Complete genome sequence of Streptosporangium roseum type strain (NI 9100T) , 2010, Standards in genomic sciences.

[7]  H. Ikeda,et al.  Complete genome sequence of the motile actinomycete Actinoplanes missouriensis 431T (= NBRC 102363T) , 2012, Standards in genomic sciences.

[8]  D. Newman,et al.  Microbial natural products: molecular blueprints for antitumor drugs , 2013, Journal of Industrial Microbiology & Biotechnology.

[9]  Gregory L. Challis,et al.  Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways , 2014, Journal of Industrial Microbiology & Biotechnology.

[10]  N. Keller,et al.  Strategies for mining fungal natural products , 2014, Journal of Industrial Microbiology & Biotechnology.

[11]  S. Brady,et al.  Culture-independent discovery of natural products from soil metagenomes , 2016, Journal of Industrial Microbiology & Biotechnology.

[12]  Lin Tao,et al.  Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting , 2011, Proceedings of the National Academy of Sciences.

[13]  Yi-Qiang Cheng,et al.  Genome-guided discovery of diverse natural products from Burkholderia sp. , 2014, Journal of Industrial Microbiology & Biotechnology.

[14]  S. Donadio,et al.  Advancing cell wall inhibitors towards clinical applications , 2016, Journal of Industrial Microbiology & Biotechnology.

[15]  Richard H. Baltz,et al.  Natural product discovery: past, present, and future , 2016, Journal of Industrial Microbiology & Biotechnology.

[16]  B. Aigle,et al.  Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer. , 2015, Journal of biotechnology.

[17]  R. H. Baltz MbtH homology codes to identify gifted microbes for genome mining , 2014, Journal of Industrial Microbiology & Biotechnology.

[18]  Roy D. Welch,et al.  Complete genome sequence of the myxobacterium Sorangium cellulosum , 2007, Nature Biotechnology.

[19]  Manfred,et al.  Complete genome sequence of Saccharomonospora viridis type strain ( P 101 T ) , 2009 .

[20]  G. V. van Wezel,et al.  Taxonomy, Physiology, and Natural Products of Actinobacteria , 2015, Microbiology and Molecular Reviews.

[21]  Liisa Holm,et al.  Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes , 2014, Proceedings of the National Academy of Sciences.

[22]  C. Kerfeld,et al.  Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria , 2014, BMC Genomics.

[23]  P. Hugenholtz,et al.  Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes , 2013, Nature Biotechnology.

[24]  Clay C C Wang,et al.  Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans , 2014, Journal of Industrial Microbiology & Biotechnology.

[25]  Natalia Ivanova,et al.  Genome Sequence and Analysis of the Soil Cellulolytic Actinomycete Thermobifida fusca YX , 2007, Journal of bacteriology.

[26]  L. Chesnel,et al.  Discovery and development of surotomycin for the treatment of Clostridium difficile , 2016, Journal of Industrial Microbiology & Biotechnology.

[27]  Galina,et al.  Complete genome sequence of Nakamurella multipartita type strain (Y-104) , 2010 .

[28]  Paula Y. Calle,et al.  Tailoring enzyme-rich environmental DNA clones: a source of enzymes for generating libraries of unnatural natural products. , 2010, Journal of the American Chemical Society.

[29]  Christopher N. Boddy,et al.  Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides , 2014, Journal of Industrial Microbiology & Biotechnology.

[30]  C. Walsh,et al.  Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. , 1998, Biochemistry.

[31]  János Bérdy,et al.  Bioactive microbial metabolites. , 2005, The Journal of antibiotics.

[32]  J. Banfield,et al.  De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities , 2011, The ISME Journal.

[33]  Satoshi Omura,et al.  Genome mining of the Streptomycesavermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters , 2014, Journal of Industrial Microbiology & Biotechnology.

[34]  R. H. Baltz Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery , 2011, Journal of Industrial Microbiology & Biotechnology.

[35]  Bo Zhang,et al.  Genome Sequence of the Milbemycin-Producing Bacterium Streptomycesbingchenggensis , 2010, Journal of bacteriology.

[36]  Natalia N. Ivanova,et al.  Insights into the phylogeny and coding potential of microbial dark matter , 2013, Nature.

[37]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[38]  T. Weber,et al.  Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365 , 2016, Journal of Industrial Microbiology & Biotechnology.

[39]  N. Pace Mapping the Tree of Life: Progress and Prospects , 2009, Microbiology and Molecular Biology Reviews.

[40]  M. Thaker,et al.  Antibiotic resistance–mediated isolation of scaffold-specific natural product producers , 2014, Nature Protocols.

[41]  Nicholas Waglechner,et al.  Identifying producers of antibacterial compounds by screening for antibiotic resistance , 2013, Nature Biotechnology.

[42]  R. H. Baltz Strain improvement in actinomycetes in the postgenomic era , 2011, Journal of Industrial Microbiology & Biotechnology.

[43]  D. Kaiser,et al.  Evolution of sensory complexity recorded in a myxobacterial genome , 2006, Proceedings of the National Academy of Sciences.

[44]  Margherita Sosio,et al.  Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. , 2007, Natural product reports.

[45]  M. Bibb,et al.  New Insights into Chloramphenicol Biosynthesis in Streptomyces venezuelae ATCC 10712 , 2014, Antimicrobial Agents and Chemotherapy.

[46]  Hee‐Jeon Hong,et al.  Genome Sequence of Streptomyces toyocaensis NRRL 15009, Producer of the Glycopeptide Antibiotic A47934 , 2014, Genome Announcements.

[47]  Hua Zhu,et al.  Triggers and cues that activate antibiotic production by actinomycetes , 2014, Journal of Industrial Microbiology & Biotechnology.

[48]  Lynne A. Goodwin,et al.  Complete genome sequence of Nakamurella multipartita type strain (Y-104T) , 2010, Standards in genomic sciences.

[49]  Yoshiyuki Sakaki,et al.  Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis , 2003, Nature Biotechnology.

[50]  Michael A. Skinnider,et al.  Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM) , 2015, Nucleic acids research.

[51]  K. Ochi,et al.  Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements , 2014, Journal of Industrial Microbiology & Biotechnology.

[52]  Christopher M. Sales,et al.  Genome Sequence of the 1,4-Dioxane-Degrading Pseudonocardia dioxanivoransStrain CB1190 , 2011, Journal of bacteriology.

[53]  W. Metcalf,et al.  Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes , 2013, BMC Genomics.

[54]  Olga,et al.  Complete genome sequence of Actinosynnema mirum type strain (101) , 2014 .

[55]  M. Cooper,et al.  Natural product and natural product derived drugs in clinical trials. , 2014, Natural product reports.

[56]  Ryan A McClure,et al.  Metabologenomics: Correlation of Microbial Gene Clusters with Metabolites Drives Discovery of a Nonribosomal Peptide with an Unusual Amino Acid Monomer , 2016, ACS central science.

[57]  D. Newman,et al.  Natural Products as Sources of New Drugs from 1981 to 2014. , 2016, Journal of natural products.

[58]  Baoli Zhu,et al.  Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism , 2010, Cell Research.

[59]  Marnix H Medema,et al.  Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. , 2016, Fungal genetics and biology : FG & B.

[60]  William Fenical,et al.  Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica , 2007, Proceedings of the National Academy of Sciences.

[61]  S. Brady,et al.  Global biogeographic sampling of bacterial secondary metabolism , 2015, eLife.

[62]  Jun Ishikawa,et al.  Genome Sequence of the Streptomycin-Producing Microorganism Streptomyces griseus IFO 13350 , 2008, Journal of bacteriology.

[63]  Yuriy Rebets,et al.  Complete genome sequence of producer of the glycopeptide antibiotic Aculeximycin Kutzneria albida DSM 43870T, a representative of minor genus of Pseudonocardiaceae , 2014, BMC Genomics.

[64]  Krishna,et al.  Complete genome sequence of Thermobispora bispora type strain (R51 T ) , 2010 .

[65]  N. Kyrpides,et al.  Complete genome sequence of Actinosynnema mirum type strain (101T) , 2009, Standards in genomic sciences.

[66]  Draft Genome Sequence of Streptomyces rapamycinicus Strain NRRL 5491, the Producer of the Immunosuppressant Rapamycin , 2013, Genome Announcements.

[67]  Brian O. Bachmann,et al.  Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? , 2014, Journal of Industrial Microbiology & Biotechnology.

[68]  A. Danchin,et al.  The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens , 2003, Nature Biotechnology.

[69]  Jacques Ravel,et al.  Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. , 2009, Methods in enzymology.

[70]  R. H. Baltz Renaissance in antibacterial discovery from actinomycetes. , 2008, Current opinion in pharmacology.

[71]  Brian C. Thomas,et al.  Unusual biology across a group comprising more than 15% of domain Bacteria , 2015, Nature.

[72]  Jeroen S. Dickschat,et al.  Genome mining of Streptomyces ambofaciens , 2014, Journal of Industrial Microbiology & Biotechnology.

[73]  Christopher J. Silva,et al.  Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. , 2005, Microbiology.

[74]  Li Li,et al.  Complete Genome Sequence of Paenibacillus mucilaginosus 3016, a Bacterium Functional as Microbial Fertilizer , 2012, Journal of bacteriology.

[75]  Victor M. Markowitz,et al.  IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites , 2015, mBio.

[76]  Brian C. Thomas,et al.  Small Genomes and Sparse Metabolisms of Sediment-Associated Bacteria from Four Candidate Phyla , 2013, mBio.

[77]  Z. Deng,et al.  Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008 , 2012, BMC Genomics.

[78]  Michael A. Skinnider,et al.  Informatic search strategies to discover analogues and variants of natural product archetypes , 2016, Journal of Industrial Microbiology & Biotechnology.

[79]  S. Brady,et al.  Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary , 2008, Proceedings of the National Academy of Sciences.

[80]  W. Gerwick,et al.  Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery , 2016, Journal of Industrial Microbiology & Biotechnology.

[81]  Arnold L. Demain,et al.  Importance of microbial natural products and the need to revitalize their discovery , 2014, Journal of Industrial Microbiology & Biotechnology.

[82]  J. Blom,et al.  Complete genome sequence of Saccharothrix espanaensis DSM 44229T and comparison to the other completely sequenced Pseudonocardiaceae , 2012, BMC Genomics.

[83]  Pieter C Dorrestein,et al.  Illuminating the dark matter in metabolomics , 2015, Proceedings of the National Academy of Sciences.

[84]  S. Tringe,et al.  Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen , 2011, Science.

[85]  Alexander J. Probst,et al.  Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum , 2016, PeerJ.

[86]  Guo-Ping Zhao,et al.  Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis , 2014, BMC Genomics.

[87]  Hong Liu,et al.  Genome Sequence of the Halotolerant Marine Bacterium Myxococcus fulvus HW-1 , 2011, Journal of bacteriology.

[88]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[89]  Jan P. Meier-Kolthoff,et al.  Correction for Barka et al., Taxonomy, Physiology, and Natural Products of Actinobacteria , 2016, Microbiology and Molecular Reviews.

[90]  T. Sparks,et al.  Natural product derived insecticides: discovery and development of spinetoram , 2016, Journal of Industrial Microbiology & Biotechnology.

[91]  K. Ochi,et al.  New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters , 2012, Applied Microbiology and Biotechnology.

[92]  K. Sivonen,et al.  Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. , 2015, Current opinion in genetics & development.

[93]  M. Medema,et al.  Computational strategies for genome-based natural product discovery and engineering in fungi. , 2016, Fungal genetics and biology : FG & B.

[94]  Ken Kasahara,et al.  Activation and Products of the Cryptic Secondary Metabolite Biosynthetic Gene Clusters by Rifampin Resistance (rpoB) Mutations in Actinomycetes , 2013, Journal of bacteriology.

[95]  Neil L Kelleher,et al.  A Roadmap for Natural Product Discovery Based on Large-Scale Genomics and Metabolomics , 2014, Nature chemical biology.

[96]  G. Challis,et al.  Discovery of microbial natural products by activation of silent biosynthetic gene clusters , 2015, Nature Reviews Microbiology.

[97]  Markiyan Samborskyy,et al.  Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338 , 2007, Nature Biotechnology.

[98]  Ruben E. Valas,et al.  Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage , 2011, The ISME Journal.

[99]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[100]  Luke R. Thompson,et al.  Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome , 2016, Genome Announcements.

[101]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[102]  R. H. Baltz Antimicrobials from Actinomycetes: Back to the Future , 2018 .

[103]  Victoria Knight-Connoni Discovery and development of Surotomycin , 2015 .

[104]  M. Smanski,et al.  Leveraging ecological theory to guide natural product discovery , 2016, Journal of Industrial Microbiology & Biotechnology.

[105]  Matt Nolan,et al.  Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing , 2012, Proceedings of the National Academy of Sciences.

[106]  M. Hattori,et al.  The complete genomic sequence of Nocardia farcinica IFM 10152. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[107]  A. Goesmann,et al.  Complete genome sequence of the kirromycin producer Streptomyces collinus Tü 365 consisting of a linear chromosome and two linear plasmids. , 2013, Journal of Biotechnology.