Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study

Optical imaging and spectroscopy have emerged as effective tools for detecting malignant changes associated with oral cancer. While clinical studies have demonstrated high sensitivity and specificity for detection, current devices either interrogate a small region or can have reduced performance for some benign lesions. We describe a snapshot imaging spectrometer that combines the large field-of-view of widefield imaging with the diagnostic strength of spectroscopy. The portable device can stream RGB images at 7.2 frames per second and record both autofluorescence and reflectance spectral datacubes in < 1 second. We report initial data from normal volunteers and oral cancer patients.

[1]  J. Ramella-Roman,et al.  A new phenotypic manifestation of familial adenomatous polyposis , 2011, Familial Cancer.

[2]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[3]  Anthony J. Durkin,et al.  Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain. , 2005, Optics letters.

[4]  Tomasz S. Tkaczyk,et al.  Real time hyperspectral imaging of pancreatic β cell dynamics with Image Mapping Spectrometer (IMS) , 2011 .

[5]  Liang Gao,et al.  Image mapping spectrometry: calibration and characterization , 2012, Optical engineering.

[6]  Pierre Lane,et al.  Direct fluorescence visualization of clinically occult high‐risk oral premalignant disease using a simple hand‐held device , 2007, Head & neck.

[7]  C. MacAulay,et al.  Squamous cell carcinoma and precursor lesions: diagnosis and screening in a technical era. , 2011, Periodontology 2000.

[8]  S. Shapshay,et al.  Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma , 2003, Cancer.

[9]  Bruce J. Tromberg,et al.  Spectrally-resolved imaging of dynamic turbid media , 2011, BiOS.

[10]  Liang Gao,et al.  Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy , 2010, Optics express.

[11]  Cristina Kurachi,et al.  Noninvasive evaluation of oral lesions using depth‐sensitive optical spectroscopy , 2009, Cancer.

[12]  Cristina Kurachi,et al.  Comparison of multispectral wide-field optical imaging modalities to maximize image contrast for objective discrimination of oral neoplasia. , 2010, Journal of biomedical optics.

[13]  Elliot Abt,et al.  The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma. , 2012, Texas dental journal.

[14]  Anthony J. Durkin,et al.  Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer. , 2011, Journal of biomedical optics.

[15]  Rebecca Richards-Kortum,et al.  Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. , 2008, Applied optics.

[16]  Liang Gao,et al.  Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS) , 2011, Biomedical optics express.

[17]  S. Macenka,et al.  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1988 .

[18]  A. Jemal,et al.  Cancer Statistics, 2010 , 2010, CA: a cancer journal for clinicians.

[19]  Rebecca Richards-Kortum,et al.  Understanding the Biological Basis of Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue , 2008, Clinical Cancer Research.

[20]  R. Richards-Kortum,et al.  Multispectral optical imaging device for in vivo detection of oral neoplasia. , 2008, Journal of biomedical optics.

[21]  M E Dickinson,et al.  Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. , 2001, BioTechniques.

[22]  Calum MacAulay,et al.  Fluorescence Visualization Detection of Field Alterations in Tumor Margins of Oral Cancer Patients , 2006, Clinical Cancer Research.

[23]  K. Zuzak,et al.  Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion. , 2002, Analytical chemistry.

[24]  Liang Gao,et al.  Real-time snapshot hyperspectral imaging endoscope. , 2011, Journal of biomedical optics.

[25]  Anthony J. Durkin,et al.  Quantitation and mapping of tissue optical properties using modulated imaging. , 2009, Journal of biomedical optics.

[26]  R. Richards-Kortum,et al.  Objective Detection and Delineation of Oral Neoplasia Using Autofluorescence Imaging , 2009, Cancer Prevention Research.

[27]  Esther Kim,et al.  Human papillomavirus and rising oropharyngeal cancer incidence in the United States. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  Wallace M. Porter,et al.  The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .

[29]  D. Slaughter,et al.  “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin , 1953, Cancer.

[30]  Cristina Kurachi,et al.  In vivo fluorescence hyperspectral imaging of oral neoplasia , 2009, BiOS.