Recent Advances in Finite Integration Technique for High Frequency Applications

We review some recent extensions of the Finite Integration Technique (FIT), which is known to be a generalization of the Finite Difference Time Domain (FDTD) method. Some shortcomings of the standard formulation are discussed which limit the applicability or at least the efficiency of the time domain variant of FIT. The novel developments which are proposed in this paper cover both the basic geometrical modeling in space and time and advanced methods to solve the algebraic problems in time and frequency domain. A numerical application is presented to demonstrate the performance of the algorithms in the high frequency regime.

[1]  Rolf Schuhmann,et al.  A uniformly stable conformal FDTD‐method in Cartesian grids , 2003 .

[2]  Rolf Schuhmann,et al.  Calculation of frequency domain parameters using 3D eigensolutions , 1999 .

[3]  Peter Thoma Zur numerischen Lösung der Maxwellschen Gleichungen im Zeitbereich , 1997 .

[4]  Thomas Weiland,et al.  Rosenbrock-Methods for Time Step Adaptive Transient Eddy Current Simulations without Nonlinear Iterations , 2004 .

[5]  Rolf Schuhmann,et al.  Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments , 2001 .

[6]  T. Weiland Time Domain Electromagnetic Field Computation with Finite Difference Methods , 1996 .

[7]  Rolf Schuhmann,et al.  Two-step Lanczos algorithm for model order reduction , 2002 .

[8]  R. Mittra,et al.  A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects , 1997 .

[9]  E. Michielssen,et al.  The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena , 1999 .

[10]  Thomas Weiland,et al.  Advances in FIT, FDTD modeling , 2002 .

[11]  Rolf Schuhmann,et al.  Frequency and Time Domain Computations of S-Parameters Using the Finite Integration Technique , 1996 .

[12]  Rolf Schuhmann,et al.  Time and Frequency Domain Simulations of Highly Resonant RF-Devices , 2001 .

[13]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[14]  Rolf Schuhmann,et al.  Coupling of the Finite Integration Technique and the Uniform Theory of Diffraction , 2000 .

[15]  Rolf Schuhmann,et al.  Higher Order Explicit Time Integration Schemes for Maxwell's Equations , 2002 .

[16]  Thomas Weiland,et al.  Triangular discretization method for the evaluation of RF-fields in cylindrically symmetric cavities , 1985 .

[17]  Rolf Schuhmann,et al.  FIT / FDTD Schemes on Non-Cartesian Computational Grids , 2002 .

[18]  Rolf Schuhmann,et al.  A new Whitney-based material operator for the finite-integration technique on triangular grids , 2002 .

[19]  Rolf Schuhmann,et al.  Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory , 1996 .

[20]  David R. Smith,et al.  Direct calculation of permeability and permittivity for a left-handed metamaterial , 2000 .

[21]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[22]  T. Weiland,et al.  Efficient calculation of effective material parameters in metamaterials using FDTD and a modal approach , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[23]  Rolf Schuhmann,et al.  Rigorous Analysis of Trapped Modes in Accelerating Cavities , 2000 .