A Model to Predict Low Academic Performance at a Specific Enrollment Using Data Mining
暂无分享,去创建一个
Fabio A. González | Elizabeth León-Guzmán | Camilo Ernesto Lopez Guarin | F. González | Camilo Ernesto Lopez Guarin | Elizabeth León-Guzmán
[1] Sotiris B. Kotsiantis,et al. Preventing Student Dropout in Distance Learning Using Machine Learning Techniques , 2003, KES.
[2] Sebastián Ventura,et al. Educational Data Mining: A Review of the State of the Art , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[3] Sérgio André Ferreira,et al. Academic Analytics: Mapeando o Genoma da Universidade , 2013 .
[4] Ingo Mierswa,et al. YALE: rapid prototyping for complex data mining tasks , 2006, KDD '06.
[5] Eva Millán Valldeperas,et al. Modelo Bayesiano del Alumno basado en el Estilo de Aprendizaje y las Preferencias , 2009, Rev. Iberoam. de Tecnol. del Aprendiz..
[6] Gloria Calvo,et al. Movilidad social y educación. A propósito de Los que suben y los que bajan de Alejandro Gaviria , 2002 .
[7] Pedro M. Domingos. MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.
[8] George Siemens,et al. Learning analytics and educational data mining: towards communication and collaboration , 2012, LAK.
[9] R Alkhasawneh,et al. Modeling student retention in science and engineering disciplines using neural networks , 2011, 2011 IEEE Global Engineering Education Conference (EDUCON).
[10] Philippe P. Parmentier,et al. La réussite des études universitaires. Facteurs structurels et processuels de la performance académique en première année en médecine , 1996 .
[11] Carlos Márquez-Vera,et al. Predicción del Fracaso Escolar Mediante Técnicas de Minería de Datos , 2012, Rev. Iberoam. de Tecnol. del Aprendiz..
[12] Yohannes Kurniawan,et al. Use data warehouse and data mining to predict student academic performance in schools: A case study (perspective application and benefits) , 2013, Proceedings of 2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE).
[13] Nadine Meskens,et al. Determination of factors influencing the achievement of the first-year university students using data mining methods , 2006 .
[14] Ruth Reátegui,et al. Student Behavior Patterns in a Virtual Learning Environment , 2013 .
[15] Carlos Delgado Kloos,et al. Learning analytics @ UC3M , 2013, 2013 IEEE Global Engineering Education Conference (EDUCON).
[16] Aiko M. Hormann,et al. Programs for Machine Learning. Part I , 1962, Inf. Control..
[17] Ryan S. Baker,et al. The State of Educational Data Mining in 2009: A Review and Future Visions. , 2009, EDM 2009.
[18] Daniel T. Larose,et al. Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .
[19] Lubos Popelínský,et al. Predicting drop-out from social behaviour of students , 2012, EDM.
[20] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[21] Sotiris B. Kotsiantis. Educational data mining: a case study for predicting dropout-prone students , 2009, Int. J. Knowl. Eng. Soft Data Paradigms.
[22] Dale Anthony Carnegie,et al. Prediction of success in engineering study , 2012, Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON).
[23] R. Reason. Student Variables that Predict Retention: Recent Research and New Developments , 2003 .
[24] Elizabeth León Guzman,et al. Data Mining Model to Predict Academic Performance at the Universidad Nacional de Colombia , 2013 .
[25] Mykola Pechenizkiy,et al. Predicting Students Drop Out: A Case Study , 2009, EDM.