A Model to Predict Low Academic Performance at a Specific Enrollment Using Data Mining

This paper presents the results of applying an educational data mining approach to model academic attrition (loss of academic status) at the Universidad Nacional de Colombia. Two data mining models were defined to analyze the academic and nonacademic data; the models use two classification techniques, naïve Bayes and a decision tree classifier, in order to acquire a better understanding of the attrition during the first enrollments and to assess the quality of the data for the classification task, which can be understood as the prediction of the loss of academic status due to low academic performance. The models aim to predict the attrition in the student's first four enrollments. First, considering any of these periods, and then, at a specific enrollment. Historical academic records and data from the admission process were used to train the models, which were evaluated using cross-validation and previously unseen records from a full academic period. Experimental results show that the prediction of the loss of academic status is improved when the academic data are added.

[1]  Sotiris B. Kotsiantis,et al.  Preventing Student Dropout in Distance Learning Using Machine Learning Techniques , 2003, KES.

[2]  Sebastián Ventura,et al.  Educational Data Mining: A Review of the State of the Art , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[3]  Sérgio André Ferreira,et al.  Academic Analytics: Mapeando o Genoma da Universidade , 2013 .

[4]  Ingo Mierswa,et al.  YALE: rapid prototyping for complex data mining tasks , 2006, KDD '06.

[5]  Eva Millán Valldeperas,et al.  Modelo Bayesiano del Alumno basado en el Estilo de Aprendizaje y las Preferencias , 2009, Rev. Iberoam. de Tecnol. del Aprendiz..

[6]  Gloria Calvo,et al.  Movilidad social y educación. A propósito de Los que suben y los que bajan de Alejandro Gaviria , 2002 .

[7]  Pedro M. Domingos MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.

[8]  George Siemens,et al.  Learning analytics and educational data mining: towards communication and collaboration , 2012, LAK.

[9]  R Alkhasawneh,et al.  Modeling student retention in science and engineering disciplines using neural networks , 2011, 2011 IEEE Global Engineering Education Conference (EDUCON).

[10]  Philippe P. Parmentier,et al.  La réussite des études universitaires. Facteurs structurels et processuels de la performance académique en première année en médecine , 1996 .

[11]  Carlos Márquez-Vera,et al.  Predicción del Fracaso Escolar Mediante Técnicas de Minería de Datos , 2012, Rev. Iberoam. de Tecnol. del Aprendiz..

[12]  Yohannes Kurniawan,et al.  Use data warehouse and data mining to predict student academic performance in schools: A case study (perspective application and benefits) , 2013, Proceedings of 2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE).

[13]  Nadine Meskens,et al.  Determination of factors influencing the achievement of the first-year university students using data mining methods , 2006 .

[14]  Ruth Reátegui,et al.  Student Behavior Patterns in a Virtual Learning Environment , 2013 .

[15]  Carlos Delgado Kloos,et al.  Learning analytics @ UC3M , 2013, 2013 IEEE Global Engineering Education Conference (EDUCON).

[16]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[17]  Ryan S. Baker,et al.  The State of Educational Data Mining in 2009: A Review and Future Visions. , 2009, EDM 2009.

[18]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[19]  Lubos Popelínský,et al.  Predicting drop-out from social behaviour of students , 2012, EDM.

[20]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[21]  Sotiris B. Kotsiantis Educational data mining: a case study for predicting dropout-prone students , 2009, Int. J. Knowl. Eng. Soft Data Paradigms.

[22]  Dale Anthony Carnegie,et al.  Prediction of success in engineering study , 2012, Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON).

[23]  R. Reason Student Variables that Predict Retention: Recent Research and New Developments , 2003 .

[24]  Elizabeth León Guzman,et al.  Data Mining Model to Predict Academic Performance at the Universidad Nacional de Colombia , 2013 .

[25]  Mykola Pechenizkiy,et al.  Predicting Students Drop Out: A Case Study , 2009, EDM.