Stability crossing boundaries and fragility characterization of PID controllers for SISO systems with I/O delays

This paper focuses on the closed-loop stability analysis of single-input-single-output (SISO) systems subject to input (or output) delays in the presence of PID-controllers. More precisely, using a geometric approach, we present a simple and user-friendly method for the closed-loop stability analysis as well as for the fragility of such PID controllers. The proposed approach is illustrated on several examples encountered in the control literature.

[1]  Tore Hägglund,et al.  The future of PID control , 2000 .

[2]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[3]  Masami Saeki Properties of Stabilizing PID Gain Set in Parameter Space , 2007, IEEE Transactions on Automatic Control.

[4]  Keqin Gu,et al.  On the fragility of PI controllers for time-delay SISO systems , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[5]  J. Ackermann,et al.  Robust Control: The Parameter Space Approach , 2012 .

[6]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[7]  Norbert Hohenbichler,et al.  All stabilizing PID controllers for time delay systems , 2009, Autom..

[8]  Víctor M Alfaro PID controllers' fragility. , 2007, ISA transactions.

[9]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[10]  Tore Hägglund,et al.  Advances in Pid Control , 1999 .

[11]  Shankar P. Bhattacharyya,et al.  Robust, fragile, or optimal? , 1997, IEEE Trans. Autom. Control..

[12]  Shankar P. Bhattacharyya,et al.  PID tuning revisited: guaranteed stability and non-fragility , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[13]  Irinel-Constantin Morarescu,et al.  Stability Crossing Curves of Shifted Gamma-Distributed Delay Systems , 2007, SIAM J. Appl. Dyn. Syst..

[14]  Silviu-Iulian Niculescu,et al.  On the geometry of pi controllers for SISO systems with input delays , 2007 .

[15]  J. Ackermann,et al.  Robust control , 2002 .

[16]  Qing-Chang Zhong,et al.  Robust Control of Time-delay Systems , 2006 .

[17]  Shankar P. Bhattacharyya,et al.  PID Controllers for Time Delay Systems , 2004 .

[18]  N. Bajcinca Computation of stable regions in PID parameter space for time-delay systems , 2004 .

[19]  K. Cooke,et al.  On zeroes of some transcendental equations , 1986 .

[20]  Jie Chen,et al.  On stability crossing curves for general systems with two delays , 2004 .

[21]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[22]  Ming-Tzu Ho Non-fragile PID controller design , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[23]  Wim Michiels Stability and stabilization of time-delay systems , 2002 .

[24]  Li Yu,et al.  Low-Order Stabilization of LTI Systems With Time Delay , 2009, IEEE Transactions on Automatic Control.

[25]  Silviu-Iulian Niculescu,et al.  STABILITY CROSSING CURVES OF SISO SYSTEMS CONTROLLED BY DELAYED OUTPUT FEEDBACK , 2006 .

[26]  Silviu-Iulian Niculescu,et al.  Computing non-fragile PI controllers for delay models of TCP/AQM networks , 2009, Int. J. Control.

[27]  Aidan O'Dwyer,et al.  PI and PID controller tuning rules for time delay processes: a summary , 1999 .

[28]  S. Niculescu,et al.  Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .

[29]  S. Bhattacharyya,et al.  Robust control , 1987, IEEE Control Systems Magazine.

[30]  Kirk S. Walton,et al.  Direct method for TDS stability analysis , 1987 .

[31]  V. Observation Coefficient,et al.  Comments on "Robust, Fragile, or Optimal?" , 1998 .