Sahlqvist via Translation

We investigate to what extent Sahlqvist-type results for nonclassical logics can be obtained by embedding into classical logic via some G\"odel-type translations. We prove the correspondence theorem via translation for inductive inequalities of arbitrary signatures of normal distributive lattice expansions. We also show that canonicity-via-translation can be obtained in a similarly straightforward manner, but only in the special setting of normal bi-Heyting algebra expansions. We expand on the difficulties involved in obtaining canonicity-via-translation outside of the bi-Heyting setting.

[1]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[2]  A. Tarski,et al.  On Closed Elements in Closure Algebras , 1946 .

[3]  Alfred Tarski,et al.  Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.

[4]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[5]  Michael Dummett,et al.  Modal Logics Between S4 and S5 , 1967 .

[6]  Andrzej Grzegorczyk Some relational systems and the associated topological spaces , 1967 .

[7]  Cecylia Rauszer,et al.  A formalization of the propositional calculus of H-B logic , 1974 .

[8]  L. Maksimova,et al.  A lattice of normal modal logics , 1974 .

[9]  C. Rauszer Semi-Boolean algebras and their applications to intuitionistic logic with dual operations , 1974 .

[10]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[11]  W. Blok Varieties of interior algebras , 1976 .

[12]  Johan van Benthem,et al.  Modal reduction principles , 1976, Journal of Symbolic Logic.

[13]  G. Servi On modal logic with an intuitionistic base , 1977 .

[14]  C. Rauszer An algebraic and Kripke-style approach to a certain extension of intuitionistic logic , 1980 .

[15]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[16]  Giovanni Sambin,et al.  A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.

[17]  Michael Zakharyaschev,et al.  The disjunction property of intermediate propositional logics , 1991, Stud Logica.

[18]  Michael Zakharyaschev,et al.  Modal companions of intermediate propositional logics , 1992, Stud Logica.

[19]  Bjarni Jónsson,et al.  On the canonicity of Sahlqvist identities , 1994, Stud Logica.

[20]  J. Michael Dunn,et al.  Positive modal logic , 1995, Stud Logica.

[21]  M. de Rijke,et al.  Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.

[22]  Functional Translation and Second-Order Frame Properties of Modal Logics , 1997, J. Log. Comput..

[23]  F. Wolter,et al.  The relation between intuitionistic and classical modal logics , 1997 .

[24]  F. Wolter,et al.  Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics , 1997 .

[25]  Frank Wolter,et al.  On Logics with Coimplication , 1998, J. Philos. Log..

[26]  Natasha Kurtonina Categorial Inference and Modal Logic , 1998, J. Log. Lang. Inf..

[27]  Viorica Sofronie-Stokkermans,et al.  Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics I , 2000, Stud Logica.

[28]  Valentin Goranko,et al.  Sahlqvist Formulas Unleashed in Polyadic Modal Languages , 2000, Advances in Modal Logic.

[29]  Rajeev Goré,et al.  Dual Intuitionistic Logic Revisited , 2000, TABLEAUX.

[30]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[31]  B. D. ten Cate,et al.  Sahlqvist theory for hybrid logic , 2004 .

[32]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[33]  Maarten Marx,et al.  Hybrid logics with Sahlqvist axioms , 2005, Log. J. IGPL.

[34]  Alessandra Palmigiano,et al.  Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.

[35]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..

[36]  Mai Gehrke,et al.  Generalized Kripke Frames , 2006, Stud Logica.

[37]  Valentin Goranko,et al.  Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA , 2006, J. Log. Comput..

[38]  Johan van Benthem,et al.  Modal Frame Correspondences and Fixed-Points , 2006, Stud Logica.

[39]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[40]  Mai Gehrke,et al.  Canonical extensions of double quasioperator algebras: An algebraic perspective on duality for certain algebras with binary operations , 2007 .

[41]  Valentin Goranko,et al.  IV. Semantic extensions of SQEMA , 2008, J. Appl. Non Class. Logics.

[42]  J. Guéron,et al.  Time and Modality , 2008 .

[43]  Guram Bezhanishvili,et al.  The universal modality, the center of a Heyting algebra, and the Blok-Esakia theorem , 2009, Ann. Pure Appl. Log..

[44]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. V. Recursive extensions of SQEMA , 2010, J. Appl. Log..

[45]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..

[46]  Johan van Benthem,et al.  Sahlqvist Correspondence for Modal mu-calculus , 2012, Studia Logica.

[47]  Alessandra Palmigiano,et al.  Epistemic Updates on Algebras , 2013, Log. Methods Comput. Sci..

[48]  Alessandra Palmigiano,et al.  Algebraic semantics and model completeness for Intuitionistic Public Announcement Logic , 2011, Ann. Pure Appl. Log..

[49]  Guram Bezhanishvili Leo Esakia on duality in modal and intuitionistic logics , 2014 .

[50]  Willem Conradie,et al.  Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.

[51]  Willem Conradie,et al.  Probabilistic Epistemic Updates on Algebras , 2015, LORI.

[52]  Willem Conradie,et al.  Algorithmic correspondence for intuitionistic modal mu-calculus , 2015, Theor. Comput. Sci..

[53]  Willem Conradie,et al.  Canonicity and Relativized Canonicity via Pseudo-Correspondence: an Application of ALBA , 2015, ArXiv.

[54]  Cecelia Britz Correspondence theory in many-valued modal logic , 2016 .

[55]  Willem Conradie,et al.  Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.

[56]  Alessandra Palmigiano,et al.  Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..

[57]  Willem Conradie,et al.  Constructive Canonicity for Lattice-Based Fixed Point Logics , 2016, WoLLIC.

[58]  Willem Conradie,et al.  On Sahlqvist theory for hybrid logics , 2015, J. Log. Comput..

[59]  Alessandra Palmigiano,et al.  Jónsson-style canonicity for ALBA-inequalities , 2017, J. Log. Comput..

[60]  Johan van Benthem,et al.  A bimodal perspective on possibility semantics , 2016, J. Log. Comput..

[61]  Alessandra Palmigiano,et al.  Dual characterizations for finite lattices via correspondence theory for monotone modal logic , 2014, J. Log. Comput..

[62]  Willem Conradie,et al.  Canonicity results for mu-calculi: an algorithmic approach , 2017, J. Log. Comput..

[63]  Willem Conradie,et al.  Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..

[64]  Zhiguang Zhao,et al.  Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff Spaces , 2017, WoLLIC.

[65]  Minghui Ma,et al.  Unified correspondence and proof theory for strict implication , 2016, J. Log. Comput..

[66]  Willem Conradie,et al.  Toward an Epistemic-Logical Theory of Categorization , 2017, TARK.

[67]  Alessandra Palmigiano,et al.  Unified Correspondence as a Proof-Theoretic Tool , 2016, J. Log. Comput..

[68]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for non-distributive logics , 2016, Ann. Pure Appl. Log..

[69]  Willem Conradie,et al.  Constructive Canonicity of Inductive Inequalities , 2016, Log. Methods Comput. Sci..

[70]  Zhiguang Zhao,et al.  Algorithmic correspondence and canonicity for possibility semantics , 2016, J. Log. Comput..