Sahlqvist via Translation
暂无分享,去创建一个
Willem Conradie | Alessandra Palmigiano | Zhiguang Zhao | Willem Conradie | Alessandra Palmigiano | Zhiguang Zhao | A. Palmigiano
[1] A. Tarski,et al. The Algebra of Topology , 1944 .
[2] A. Tarski,et al. On Closed Elements in Closure Algebras , 1946 .
[3] Alfred Tarski,et al. Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.
[4] Jaakko Hintikka,et al. Time And Modality , 1958 .
[5] Michael Dummett,et al. Modal Logics Between S4 and S5 , 1967 .
[6] Andrzej Grzegorczyk. Some relational systems and the associated topological spaces , 1967 .
[7] Cecylia Rauszer,et al. A formalization of the propositional calculus of H-B logic , 1974 .
[8] L. Maksimova,et al. A lattice of normal modal logics , 1974 .
[9] C. Rauszer. Semi-Boolean algebras and their applications to intuitionistic logic with dual operations , 1974 .
[10] Henrik Sahlqvist. Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .
[11] W. Blok. Varieties of interior algebras , 1976 .
[12] Johan van Benthem,et al. Modal reduction principles , 1976, Journal of Symbolic Logic.
[13] G. Servi. On modal logic with an intuitionistic base , 1977 .
[14] C. Rauszer. An algebraic and Kripke-style approach to a certain extension of intuitionistic logic , 1980 .
[15] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[16] Giovanni Sambin,et al. A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.
[17] Michael Zakharyaschev,et al. The disjunction property of intermediate propositional logics , 1991, Stud Logica.
[18] Michael Zakharyaschev,et al. Modal companions of intermediate propositional logics , 1992, Stud Logica.
[19] Bjarni Jónsson,et al. On the canonicity of Sahlqvist identities , 1994, Stud Logica.
[20] J. Michael Dunn,et al. Positive modal logic , 1995, Stud Logica.
[21] M. de Rijke,et al. Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.
[22] Functional Translation and Second-Order Frame Properties of Modal Logics , 1997, J. Log. Comput..
[23] F. Wolter,et al. The relation between intuitionistic and classical modal logics , 1997 .
[24] F. Wolter,et al. Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics , 1997 .
[25] Frank Wolter,et al. On Logics with Coimplication , 1998, J. Philos. Log..
[26] Natasha Kurtonina. Categorial Inference and Modal Logic , 1998, J. Log. Lang. Inf..
[27] Viorica Sofronie-Stokkermans,et al. Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics I , 2000, Stud Logica.
[28] Valentin Goranko,et al. Sahlqvist Formulas Unleashed in Polyadic Modal Languages , 2000, Advances in Modal Logic.
[29] Rajeev Goré,et al. Dual Intuitionistic Logic Revisited , 2000, TABLEAUX.
[30] M. Gehrke,et al. Bounded Lattice Expansions , 2001 .
[31] B. D. ten Cate,et al. Sahlqvist theory for hybrid logic , 2004 .
[32] Yde Venema,et al. A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..
[33] Maarten Marx,et al. Hybrid logics with Sahlqvist axioms , 2005, Log. J. IGPL.
[34] Alessandra Palmigiano,et al. Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.
[35] Valentin Goranko,et al. Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..
[36] Mai Gehrke,et al. Generalized Kripke Frames , 2006, Stud Logica.
[37] Valentin Goranko,et al. Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA , 2006, J. Log. Comput..
[38] Johan van Benthem,et al. Modal Frame Correspondences and Fixed-Points , 2006, Stud Logica.
[39] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[40] Mai Gehrke,et al. Canonical extensions of double quasioperator algebras: An algebraic perspective on duality for certain algebras with binary operations , 2007 .
[41] Valentin Goranko,et al. IV. Semantic extensions of SQEMA , 2008, J. Appl. Non Class. Logics.
[42] J. Guéron,et al. Time and Modality , 2008 .
[43] Guram Bezhanishvili,et al. The universal modality, the center of a Heyting algebra, and the Blok-Esakia theorem , 2009, Ann. Pure Appl. Log..
[44] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. V. Recursive extensions of SQEMA , 2010, J. Appl. Log..
[45] Willem Conradie,et al. Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..
[46] Johan van Benthem,et al. Sahlqvist Correspondence for Modal mu-calculus , 2012, Studia Logica.
[47] Alessandra Palmigiano,et al. Epistemic Updates on Algebras , 2013, Log. Methods Comput. Sci..
[48] Alessandra Palmigiano,et al. Algebraic semantics and model completeness for Intuitionistic Public Announcement Logic , 2011, Ann. Pure Appl. Log..
[49] Guram Bezhanishvili. Leo Esakia on duality in modal and intuitionistic logics , 2014 .
[50] Willem Conradie,et al. Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.
[51] Willem Conradie,et al. Probabilistic Epistemic Updates on Algebras , 2015, LORI.
[52] Willem Conradie,et al. Algorithmic correspondence for intuitionistic modal mu-calculus , 2015, Theor. Comput. Sci..
[53] Willem Conradie,et al. Canonicity and Relativized Canonicity via Pseudo-Correspondence: an Application of ALBA , 2015, ArXiv.
[54] Cecelia Britz. Correspondence theory in many-valued modal logic , 2016 .
[55] Willem Conradie,et al. Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.
[56] Alessandra Palmigiano,et al. Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..
[57] Willem Conradie,et al. Constructive Canonicity for Lattice-Based Fixed Point Logics , 2016, WoLLIC.
[58] Willem Conradie,et al. On Sahlqvist theory for hybrid logics , 2015, J. Log. Comput..
[59] Alessandra Palmigiano,et al. Jónsson-style canonicity for ALBA-inequalities , 2017, J. Log. Comput..
[60] Johan van Benthem,et al. A bimodal perspective on possibility semantics , 2016, J. Log. Comput..
[61] Alessandra Palmigiano,et al. Dual characterizations for finite lattices via correspondence theory for monotone modal logic , 2014, J. Log. Comput..
[62] Willem Conradie,et al. Canonicity results for mu-calculi: an algorithmic approach , 2017, J. Log. Comput..
[63] Willem Conradie,et al. Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..
[64] Zhiguang Zhao,et al. Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff Spaces , 2017, WoLLIC.
[65] Minghui Ma,et al. Unified correspondence and proof theory for strict implication , 2016, J. Log. Comput..
[66] Willem Conradie,et al. Toward an Epistemic-Logical Theory of Categorization , 2017, TARK.
[67] Alessandra Palmigiano,et al. Unified Correspondence as a Proof-Theoretic Tool , 2016, J. Log. Comput..
[68] Willem Conradie,et al. Algorithmic correspondence and canonicity for non-distributive logics , 2016, Ann. Pure Appl. Log..
[69] Willem Conradie,et al. Constructive Canonicity of Inductive Inequalities , 2016, Log. Methods Comput. Sci..
[70] Zhiguang Zhao,et al. Algorithmic correspondence and canonicity for possibility semantics , 2016, J. Log. Comput..