Center Vortices and the Gribov Horizon
暂无分享,去创建一个
[1] D. Zwanziger. Equation of state of gluon plasma from a fundamental modular region. , 2004, Physical review letters.
[2] H. Reinhardt,et al. Signals of confinement in Green functions of SU(2) Yang-Mills theory. , 2004, Physical Review Letters.
[3] D. Zwanziger,et al. Coulomb energy, remnant symmetry, and the phases of non-Abelian gauge theories , 2004, hep-lat/0401003.
[4] J. Greensite,et al. Center dominance in SU(2) gauge-Higgs theory , 2003, hep-lat/0310057.
[5] J. Greensite,et al. Coulomb Energy, Vortices, and Confinement , 2003, hep-lat/0302018.
[6] J. Greensite. The Confinement Problem in Lattice Gauge Theory , 2003, hep-lat/0301023.
[7] D. Zwanziger. No confinement without Coulomb confinement. , 2002, Physical review letters.
[8] K. Langfeld. Lattice effective theory and the phase transition at finite densities , 2002, hep-lat/0212032.
[9] R. Janik. New multicritical random matrix ensembles , 2002, hep-th/0201167.
[10] P. Forcrand,et al. t Hooft loops and consistent order parameters for confinement , 2001, hep-lat/0110135.
[11] K. Langfeld. Confinement versus color superconductivity: a lattice investigation , 2001, hep-lat/0109033.
[12] H. Reinhardt,et al. Deconfinement in SU(2) Yang-Mills theory as a center vortex percolation transition , 2000 .
[13] M. Lavelle,et al. Hadrons without strings , 1999, hep-ph/9910398.
[14] M. Burkardt. Gauge field theories on a ⊥ lattice , 1999, hep-th/9908195.
[15] J. Greensite,et al. The Structure of projected center vortices in lattice gauge theory , 1999, hep-lat/9903023.
[16] P. Forcrand,et al. Relevance of center vortices to QCD , 1999, hep-lat/9901020.
[17] D. Zwanziger,et al. Renormalizable non-covariant gauges and Coulomb gauge limit , 1998, hep-th/9807024.
[18] D. Zwanziger. Renormalization in the Coulomb gauge and order parameter for confinement in QCD , 1998 .
[19] J. Verbaarschot,et al. Microscopic Universality in the Spectrum of the Lattice Dirac Operator , 1997, hep-lat/9704018.
[20] Heller,et al. Spatial string tension in the deconfined phase of (3+1)-dimensional SU(2) gauge theory. , 1993, Physical review letters.
[21] B. Petersson,et al. SPACELIKE WILSON LOOPS AT FINITE-TEMPERATURE , 1993, hep-lat/9306015.
[22] J. Kertész. Existence of weak singularities when going around the liquid-gas critical point , 1989 .
[23] Manousakis,et al. Nonperturbative length scale in high-temperature QCD. , 1987, Physical review letters.
[24] V. A. Franke,et al. A variational principle for the Lorentz condition and restriction of the domain of path integration in non-abelian gauge theory , 1986 .
[25] C. Borgs. Area law for spatial Wilson loops in high-temperature lattice gauge theories , 1985 .
[26] M. Virasoro,et al. The phase structure of a non-abelian gauge Higgs field system , 1981 .
[27] E. Fradkin,et al. Phase diagrams of lattice gauge theories with Higgs fields , 1979 .
[28] V. N. Gribov,et al. Quantization of non-Abelian gauge theories , 1978 .