Hydroxyalkylierungen von Cystein über das Enolat von (2R,5R)‐2(tert‐Butyl)‐1‐aza‐3‐oxa‐7‐thiabicyclo[3.3.0]octan‐4‐on und unter Selbstreproduktion des Ciralitätszentrums

Hydroxyalkylations of Cysteine through the Enolate of (2R,5R)-2(tert-Butyl)-1-aza-3-oxa-7-thiabicyclo[3.3.0]octan-4-one with Self-Reproduction of the Center of Chirality The heterobicyclic compound 1 specified in the title is readily prepared as a single stereoisomer from (R)-cysteine, formaldehyde, and pivalaldhyde. While it is not possible to generate the enolate 10 from 1 qunatitatively – due to β-elimination of thiolate (6) – an in-situ addition to aromatic aldehydes such as benzaldehydes (13–16), pyrrol-, furan-, and thiophen-2-carbaldehydes (17–19), pyridine-3-carbaldehyde (21), as well as to other non-enolizable aldehydes like cinnamaldehyde (22), can be achieved in yields of ca. 50%. The adducts (8 and 9) of lithium diisopropylamide or t-butoxide to these aldehydes are acting, probably as bases for deprotonation and as in-situ sources of the electrophilic aldehyde species (cf. 11, 12). - Of the four possible diastereoisomeric products, one is usually formed with >90% selectivity (Table). It is assumed that the preferred stereochemical course of the reaction corresponds to that observed previously with the analogous proline-derived enolate (See 23,24). A chemical correlation with l-α-methyl-β-phenylserine (25) proves the relative configuration of the benzaldehyde adduct 13. All hydroxyalkylated products (13–19, 21, 22) are obtained as crystalline, diastereoisomerically pure compounds and are fully characterized. – The benzaldehyde derivative 13 was used to exemplify the various possible transformations of these products to monocyclic or acyclic amino-acid derivatives such as the oxazolidionenes 26 and 29 (cleavage of the ring containing the S-atom), the thiazolidines 28, 31, and 32 (cleavage of the cyclic N,O-acetal) and the α-branched cysteine 27 and the phenylserines 25 and 30 (cleavage of both rings to give open-chain aminoacids).

[1]  P. Power,et al.  Isolation and x-ray crystal structure of the cuprate complex decaethoxydichlorotetralithium bis(hexaphenyldilithiumtricuprate) ([Li2Cu3Ph6]2[Li4Cl2(Et2O)10]): the first x-ray structural characterization of an anionic organocopper-lithium cluster , 1984 .

[2]  D. Seebach,et al.  α-alkylation of serine with self-reproduction of the center of chirality , 1984 .

[3]  D. Seebach,et al.  (α-Alkylation of α-heterosubstituted carboxylic acids without racemization : EPC-syntheses of tertiary alcohols and thiols☆☆☆ , 1984 .

[4]  D. Seebach,et al.  Enantiomerenreine Synthesebausteine aus verzweigter Äpfelsäure , 1983 .

[5]  D. Seebach,et al.  α-Alkylation of threonine , 1983 .

[6]  D. Seebach,et al.  Vierstufige EPC-Synthese von (+)- oder (−)-Frontalin aus Milchsäure. – Eine erste Anwendung des Prinzips der Selbstreproduktion der Chiralität in der Naturstoffsynthese , 1983 .

[7]  W. Ladner Stereoselektive Synthese von Alkoholen, XV. Stereoselektive Synthese von α‐Alkyl‐α,β‐dihydroxy‐carbonsäureester‐Derivaten: Synthese der ( + )‐Viridiflorsäure , 1983 .

[8]  U. Schöllkopf Enantioselective synthesis of nonproteinogenic amino acids , 1983 .

[9]  D. Seebach,et al.  Alkylation of amino acids without loss of the optical activity: preparation of .alpha.-substituted proline derivatives. A case of self-reproduction of chirality , 1983 .

[10]  R. Hoffmann,et al.  Stereoselektive Synthese von Alkoholen, XII. Synthese der C-9/C-13-Teilstruktur des Methynolids , 1983 .

[11]  B. Cossec,et al.  Synthese asymetrique d'acides amines α-disubstitues , 1983 .

[12]  J. Atwood,et al.  Structure and reactivity of sterically hindered lithium amides and their diethyl etherates: crystal and molecular structures of [Li{N(SiMe3)2}(OEt2)]2 and tetrakis(2,2,6,6-tetramethylpiperidinatolithium) , 1983 .

[13]  R. Bau,et al.  Preparation and structure of the phenylcopper ([Cu5(C6H5)6]-) anion , 1982 .

[14]  V. Martín,et al.  Synthesis of saccharides and related polyhydroxylated natural products. 2. Simple deoxyalditols , 1982 .

[15]  D. Comins,et al.  A one-pot alkylation of aromatic aldehydes , 1982 .

[16]  D. Seebach,et al.  Enantioselective Generation and Diastereoselective Reactions of Chiral Enolates Derived from α-Heterosubstituted Carboxylic Acids. Preliminary Communication† , 1981 .

[17]  D. Seebach,et al.  Direkte diastereoselektive Alkylierung der Weinsäure über ein Enolat , 1981 .

[18]  D. Seebach,et al.  Direct Diastereoselective Alkylation of Tartaric Acid Through an Enolate , 1981 .

[19]  G. Fráter On the stereoselectivity of the α-alkylation of β-hydroxy esters. Enantioselective synthesis of 4,4- and 6,6-disubstituted cyclohex-2-en-1-ones. , 1981 .

[20]  D. Comins,et al.  The in situ protection of aldehydes via α-amino alkoxides , 1981 .

[21]  T. Shioiri,et al.  Amino Acids and Peptides. XXVIII. A New Synthesis of α-Amino Acid Derivatives by Alkylation of Schiff Bases derived from Glycine and Alanine , 1977 .

[22]  M. Uskoković,et al.  Stereospecific total synthesis of d-biotin from L(+)-cysteine. , 1975, Journal of the American Chemical Society.

[23]  R. Parthasarathy,et al.  X-ray and NMR studies on thiazolidines: crystal structure and conformational equilibriums of N-acetyl-2-(p-tolyl)thiazolidine-4-carboxylic acid ad related thiazolidine derivatives , 1976 .

[24]  G. Wittig Old and new in the field of directed aldol condensations , 1976 .

[25]  R. H. Schlessinger,et al.  A novel method of preparing alpha-substituted hydracrylate and acrylate esters , 1973 .

[26]  S. Karady,et al.  3-aryl-2-methylserines. I. A new synthesis. , 1968, The Journal of organic chemistry.

[27]  S. Gronowitz,et al.  A Simple One-pot Procedure for the Synthesis of Certain Substituted Thiophene Aldehydes and Ketones. , 1968 .

[28]  S. Ratner,et al.  The Action of Formaldehyde upon Cysteine , 1937 .