Energy Levels of “Hydrogen Atom” in Discrete Time Dynamics

We analyze dynamical consequences of a conjecture that there exists a fundamental (indivisible) quant of time. In particular we study the problem of discrete energy levels of hydrogen atom. We are able to reconstruct potential which in discrete time formalism leads to energy levels of unperturbed hydrogen atom. We also consider linear energy levels of quantum harmonic oscillator and show how they are produced in the discrete time formalism. More generally, we show that in discrete time formalism finite motion in central potential leads to discrete energy spectrum, the property which is common for quantum mechanical theory. Thus deterministic (but discrete time!) dynamics is compatible with discrete energy levels.

[1]  P. Dirac Principles of Quantum Mechanics , 1982 .

[2]  Gerard 't Hooft Determinism in Free Bosons , 2001 .

[3]  Sheldon Goldstein,et al.  Quantum Theory Without Observers , 2007 .

[4]  P. Pfeifer,et al.  Generalized time-energy uncertainty relations and bounds on lifetimes of resonances , 1995 .

[5]  Leslie E Ballentine,et al.  The statistical interpretation of quantum mechanics , 1970 .

[6]  Andrei Khrennikov Linear representations of probabilistic transformations induced by context transitions , 2001 .

[7]  Arthur S. Wightman Hilbert''s sixth problem: Mathematical treatment of the ax-ioms of Physics , 1976 .

[8]  Masanori Ohya Information Dynamics and its Application to Recognition Process , 2004 .

[9]  Andrei Khrennikov,et al.  Representation of the Kolmogorov model having all distinguishing features of quantum probabilistic model , 2003 .

[10]  Marian Grabowski,et al.  Operational Quantum Physics , 2001 .

[11]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[12]  Gerard 't Hooft Determinism Beneath Quantum Mechanics , 2002 .

[13]  Luigi Accardi,et al.  The Probabilistic Roots of the Quantum Mechanical Paradoxes , 1984 .

[14]  Louis de Broglie,et al.  The current interpretation of wave mechanics : a critical study , 1964 .

[15]  E. Richard Cohen,et al.  Foundations of Quantum Theory , 1955 .

[16]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[17]  Carlo Rovelli Quantum gravity , 2008, Scholarpedia.

[18]  Andrei Khrennikov,et al.  Interference as a statistical consequence of conjecture on time quant , 2003 .

[19]  Andrei Khrennikov Contextual viewpoint to quantum stochastics , 2003 .

[20]  Andrei Khrennikov Interference of probabilities and number field structure of quantum models , 2001 .

[21]  W. Heisenberg Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen , 1925 .

[22]  Andrei Khrennikov,et al.  Discrete time dynamical models and their quantum-like context-dependent properties , 2003 .

[23]  H. S. Allen The Quantum Theory , 1928, Nature.

[24]  P. Lugol Annalen der Physik , 1906 .

[25]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[26]  Izumi Ojima,et al.  A Garden of Quanta: Essays in Honor of Hiroshi Ezawa , 2003 .

[27]  A. Holevo Statistical structure of quantum theory , 2001 .

[28]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[29]  Stan Gudder An Approach to Quantum Probability , 2001 .

[30]  R. Ingarden,et al.  Information Dynamics and Open Systems: Classical and Quantum Approach , 1997 .

[31]  Peter L. Knight,et al.  The Quantum Theory of Motion , 1994 .

[32]  S. Berman,et al.  Nuovo Cimento , 1983 .

[33]  Andrei Khrennikov,et al.  Discrete Time Leads to Quantum-Like Interference of Deterministic Particles , 2002 .

[34]  Robert Bruce Lindsay,et al.  The Current Interpretation of Wave Mechanics , 1965 .

[35]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[36]  Andrei Khrennikov Quantum theory: Reconsideration of foundations , 2003 .

[37]  Craig Callender,et al.  Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity , 2001 .

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  Luigi Accardi,et al.  On the physical meaning of the EPR--chameleon experiment , 2001 .

[40]  B. Hiley,et al.  The Undivided Universe: An Ontological Interpretation of Quantum Theory , 1994 .

[41]  David Ruelle,et al.  A remark on bound states in potential-scattering theory , 1969 .

[42]  L. Ballentine,et al.  Quantum mechanics , 1989 .

[43]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[44]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[45]  D. Hilbert,et al.  Über die Grundlagen der Quantenmechanik , 1928 .

[46]  W. Heisenberg A quantum-theoretical reinterpretation of kinematic and mechanical relations , 1925 .

[47]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .