Enhancing stochastic kriging for queueing simulation with stylized models

ABSTRACT Stochastic kriging is a popular metamodeling technique to approximate computationally expensive simulation models. However, it typically treats the simulation model as a black box in practice and often fails to capture the highly nonlinear response surfaces that arise from queueing simulations. We propose a simple, effective approach to improve the performance of stochastic kriging by incorporating stylized queueing models that contain useful information about the shape of the response surface. We provide several statistical tools to measure the usefulness of the incorporated stylized models. We show that even a relatively crude stylized model can substantially improve the prediction accuracy of stochastic kriging.

[1]  D. Zimmerman,et al.  Towards reconciling two asymptotic frameworks in spatial statistics , 2005 .

[2]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[3]  Wei Xie,et al.  A Bayesian Framework for Quantifying Uncertainty in Stochastic Simulation , 2014, Oper. Res..

[4]  T. J. Mitchell,et al.  Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .

[5]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[6]  Haotian Hang,et al.  Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[7]  Barry L. Nelson,et al.  Stochastic kriging for simulation metamodeling , 2008, 2008 Winter Simulation Conference.

[8]  Andrea Matta,et al.  Extended Kernel Regression: A multi-resolution method to combine simulation experiments with analytical methods , 2016, 2016 Winter Simulation Conference (WSC).

[9]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[10]  Sigrún Andradóttir,et al.  Chapter 20 An Overview of Simulation Optimization via Random Search , 2006, Simulation.

[11]  James R. Jackson,et al.  Jobshop-Like Queueing Systems , 2004, Manag. Sci..

[12]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[13]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[14]  WhittWard The Pointwise Stationary Approximation for Mt/Mt/s Queues Is Asymptotically Correct As the Rates Increase , 1991 .

[15]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[16]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[17]  Max D. Morris,et al.  Asymptotically optimum experimental designs for prediction of deterministic functions given derivative information , 1994 .

[18]  Sigrún Andradóttir,et al.  A Global Search Method for Discrete Stochastic Optimization , 1996, SIAM J. Optim..

[19]  Lihua Sun,et al.  Balancing Exploitation and Exploration in Discrete Optimization via Simulation Through a Gaussian Process-Based Search , 2014, Oper. Res..

[20]  Russell R. Barton,et al.  Simulation metamodels , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[21]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Jack P. C. Kleijnen,et al.  Improved Design of Queueing Simulation Experiments with Highly Heteroscedastic Responses , 1999, Oper. Res..

[23]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[24]  Søren Asmussen,et al.  Queueing Simulation in Heavy Traffic , 1992, Math. Oper. Res..

[25]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[26]  Simonetta Balsamo,et al.  Analysis of Queueing Networks with Blocking , 2010 .

[27]  Barry L. Nelson,et al.  Efficient generation of cycle time‐throughput curves through simulation and metamodeling , 2005, WSC '05.

[28]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[29]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[30]  Anthony Unwin,et al.  Reversibility and Stochastic Networks , 1980 .

[31]  Michel Bierlaire,et al.  An analytic finite capacity queueing network model capturing the propagation of congestion and blocking , 2009, Eur. J. Oper. Res..

[32]  Xiuli Chao,et al.  Networks with Customers, Signals, and Product Form Solution , 2011 .

[33]  Huashuai Qu,et al.  Gradient Extrapolated Stochastic Kriging , 2014, TOMC.

[34]  Warren B. Powell,et al.  The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters using Gaussian Process Regression , 2011, SIAM J. Optim..

[35]  Xi Chen,et al.  Enhancing Stochastic Kriging Metamodels with Gradient Estimators , 2013, Oper. Res..

[36]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[37]  W. Whitt Planning queueing simulations , 1989 .

[38]  K. Banasiewicz Economic and organizational effects of different legal and organizational forms of enterprises , 2006 .

[39]  W. Whitt The pointwise stationary approximation for M 1 / M 1 / s , 1991 .

[40]  Wei Xie,et al.  The influence of correlation functions on stochastic kriging metamodels , 2010, Proceedings of the 2010 Winter Simulation Conference.

[41]  Natarajan Gautam,et al.  Analysis of Queues: Methods and Applications , 2017 .

[42]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[43]  H. Akaike A new look at the statistical model identification , 1974 .

[44]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[45]  G. Matheron Principles of geostatistics , 1963 .

[46]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[47]  Rommert Dekker,et al.  An analytic model for capacity planning of prisons in the Netherlands , 2000, J. Oper. Res. Soc..

[48]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.