Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm

A polarizing signal induces endoderm production by a 4-cell stage blastomere in C. elegans called EMS. We identified 16 mutations in five genes, mom-1 through mom-5, required for EMS to produce endoderm. mom-1, mom-2, and mom-3 are required in the signaling cell, P2, while mom-4 is required in EMS. P2 signaling downregulates an HMG domain protein, POP-1, in one EMS daughter. The sequence of mom-2 predicts that it encodes a member of the Wnt family of secreted glycoproteins, which in other systems activate HMG domain proteins. Defective mitotic spindle orientations in mom mutant embryos indicate that Wnt signaling influences cytoskeletal polarity in blastomeres throughout the early embryo.

[1]  J. Kimble,et al.  Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans , 1989, Cell.

[2]  L. Edgar Blastomere culture and analysis. , 1995, Methods in cell biology.

[3]  A. McMahon,et al.  Wnt genes and vertebrate development. , 1994, Current opinion in genetics & development.

[4]  R. Moon,et al.  Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos , 1995, Molecular and cellular biology.

[5]  R. Schnabel,et al.  glp-1 and inductions establishing embryonic axes in C. elegans. , 1994, Development.

[6]  W. Wood,et al.  Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos , 1983, Cell.

[7]  Steven N. Hird,et al.  Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. , 1996, Development.

[8]  R. Lin,et al.  pop-1 Encodes an HMG box protein required for the specification of a mesoderm precursor in Early C. elegans embryos , 1995, Cell.

[9]  B. Bowerman,et al.  Time-dependent responses to glp-1-mediated inductions in early C. elegans embryos. , 1996, Development.

[10]  B. Goldstein Establishment of gut fate in the E lineage of C. elegans: the roles of lineage-dependent mechanisms and cell interactions. , 1993, Development.

[11]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[12]  David M. Miller,et al.  Differential localization of two myosins within nematode thick filaments , 1983, Cell.

[13]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. , 1994, Development.

[14]  H. Schnabel,et al.  The glp-1 locus and cellular interactions in early C. elegans embryos , 1987, Cell.

[15]  Mariann Bienz,et al.  LEF-1, a Nuclear Factor Coordinating Signaling Inputs from wingless and decapentaplegic , 1997, Cell.

[16]  M. Klymkowsky,et al.  Cytoplasmically anchored plakoglobin induces a WNT-like phenotype in Xenopus. , 1997, Developmental biology.

[17]  D. Morton,et al.  Identification of genes required for cytoplasmic localization in early C. elegans embryos , 1988, Cell.

[18]  Ira Herskowitz,et al.  Mechanisms of asymmetric cell division: Two Bs or not two Bs, that is the question , 1992, Cell.

[19]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[20]  E. Schierenberg Reversal of cellular polarity and early cell-cell interaction in the embryos of Caenorhabditis elegans. , 1987, Developmental biology.

[21]  N. Perrimon,et al.  The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. , 1996, Genes & development.

[22]  L. Avery,et al.  Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans , 1989, Neuron.

[23]  M. Raff,et al.  All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody , 1981, Cell.

[24]  Henry F. Epstein,et al.  Caenorhabditis elegans : modern biological analysis of an organism , 1995 .

[25]  R. Moon,et al.  Signal transduction through beta-catenin and specification of cell fate during embryogenesis. , 1996, Genes & development.

[26]  N. Perrimon,et al.  Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. , 1993, The EMBO journal.

[27]  S. Mango,et al.  The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. , 1994, Development.

[28]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[29]  I. Greenwald,et al.  glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins , 1989, Cell.

[30]  B. Goldstein Cell contacts orient some cell division axes in the Caenorhabditis elegans embryo , 1995, The Journal of cell biology.

[31]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[32]  S. Mango,et al.  Two maternal genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early Caenorhabditis elegans embryo. , 1994, Development.

[33]  B. Goldstein An analysis of the response to gut induction in the C. elegans embryo. , 1995, Development.

[34]  Harold Weintraub,et al.  The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos , 1992, Cell.

[35]  Roel Nusse,et al.  Wnt genes , 1992, Cell.

[36]  B. Goldstein Induction of gut in Caenorhabditis elegans embryos , 1992, Nature.

[37]  C. Mello,et al.  MEX-3 Is a KH Domain Protein That Regulates Blastomere Identity in Early C. elegans Embryos , 1996, Cell.

[38]  A. Hyman,et al.  Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans , 1987, The Journal of cell biology.

[39]  P. Gönczy,et al.  Cortical domains and the mechanisms of asymmetric cell division. , 1996, Trends in cell biology.

[40]  Hans Clevers,et al.  Armadillo Coactivates Transcription Driven by the Product of the Drosophila Segment Polarity Gene dTCF , 1997, Cell.

[41]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[42]  Bruce Bowerman,et al.  skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo , 1992, Cell.

[43]  Konrad Basler,et al.  pangolinencodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila , 1997, Nature.

[44]  B. Draper,et al.  The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo , 1994, Cell.