Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43

[1]  J. Yates,et al.  HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells , 2020, Science.

[2]  P. Vourc'h,et al.  A role for SUMOylation in the Formation and Cellular Localization of TDP-43 Aggregates in Amyotrophic Lateral Sclerosis , 2019, Molecular Neurobiology.

[3]  M. Hasegawa,et al.  The basis of clinicopathological heterogeneity in TDP-43 proteinopathy , 2019, Acta Neuropathologica.

[4]  J. Gal,et al.  The Acetylation of Lysine-376 of G3BP1 Regulates RNA Binding and Stress Granule Dynamics , 2019, Molecular and Cellular Biology.

[5]  B. Portz,et al.  RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43 , 2019, Neuron.

[6]  A. Girdhar,et al.  Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis , 2019, Front. Mol. Neurosci..

[7]  Wei Liu,et al.  SIRT1 mediates the role of RNA-binding protein QKI 5 in the synthesis of triglycerides in non-alcoholic fatty liver disease mice via the PPARα/FoxO1 signaling pathway , 2019, International journal of molecular medicine.

[8]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[9]  C. Gloeckner,et al.  Identification and characterization of ubiquitinylation sites in TAR DNA-binding protein of 43 kDa (TDP-43) , 2018, The Journal of Biological Chemistry.

[10]  J. Shorter,et al.  The molecular language of membraneless organelles , 2018, The Journal of Biological Chemistry.

[11]  A. Girdhar,et al.  The amyloidogenicity of a C-terminal region of TDP-43 implicated in Amyotrophic Lateral Sclerosis can be affected by anions, acetylation and homodimerization. , 2018, Biochimie.

[12]  R. Pappu,et al.  A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins , 2018, Cell.

[13]  P. Tomançak,et al.  RNA buffers the phase separation behavior of prion-like RNA binding proteins , 2018, Science.

[14]  Y. Chook,et al.  Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization , 2018, Scientific Reports.

[15]  Luwen Wang,et al.  Pathomechanisms of TDP‐43 in neurodegeneration , 2018, Journal of neurochemistry.

[16]  R. López-González,et al.  Dysregulated molecular pathways in amyotrophic lateral sclerosis–frontotemporal dementia spectrum disorder , 2017, The EMBO journal.

[17]  B. Tang Could Sirtuin Activities Modify ALS Onset and Progression? , 2016, Cellular and Molecular Neurobiology.

[18]  Dieter Söll,et al.  Continuous directed evolution of aminoacyl-tRNA synthetases , 2017, Nature chemical biology.

[19]  M. Bereman,et al.  Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program , 2017, Nature Communications.

[20]  Nicolas L. Fawzi,et al.  ALS Mutations Disrupt Phase Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain. , 2016, Structure.

[21]  E. Buratti,et al.  Physiological functions and pathobiology of TDP‐43 and FUS/TLS proteins , 2016, Journal of neurochemistry.

[22]  F. Kametani,et al.  Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains , 2016, Scientific Reports.

[23]  J. Jankovic,et al.  Parkinsonism, movement disorders and genetics in frontotemporal dementia , 2016, Nature Reviews Neurology.

[24]  C. Lim,et al.  Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation , 2016, Scientific Reports.

[25]  Simon J Elsässer,et al.  Genetic code expansion in stable cell lines enables encoded chromatin modification , 2016, Nature Methods.

[26]  J. Trojanowski,et al.  An acetylation switch controls TDP-43 function and aggregation propensity , 2015, Nature Communications.

[27]  R. Harris,et al.  PyTMs: a useful PyMOL plugin for modeling common post-translational modifications , 2014, BMC Bioinformatics.

[28]  Tobias M. Rasse,et al.  UBE2E Ubiquitin-conjugating Enzymes and Ubiquitin Isopeptidase Y Regulate TDP-43 Protein Ubiquitination* , 2014, The Journal of Biological Chemistry.

[29]  E. Seto,et al.  Erasers of histone acetylation: the histone deacetylase enzymes. , 2014, Cold Spring Harbor perspectives in biology.

[30]  Adriano Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[31]  J. Ule,et al.  Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43 , 2013, Nature Structural &Molecular Biology.

[32]  Leonard Petrucelli,et al.  The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation , 2013, Human molecular genetics.

[33]  Gang Yu,et al.  TDP-43 in central nervous system development and function: clues to TDP-43-associated neurodegeneration , 2012, Biological chemistry.

[34]  Q. Wang,et al.  Neurodegeneration-associated TDP-43 Interacts with Fragile X Mental Retardation Protein (FMRP)/Staufen (STAU1) and Regulates SIRT1 Expression in Neuronal Cells* , 2012, The Journal of Biological Chemistry.

[35]  C. Haass,et al.  Requirements for Stress Granule Recruitment of Fused in Sarcoma (FUS) and TAR DNA-binding Protein of 43 kDa (TDP-43)* , 2012, The Journal of Biological Chemistry.

[36]  J. Keith Joung,et al.  FLASH Assembly of TALENs Enables High-Throughput Genome Editing , 2012, Nature Biotechnology.

[37]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[38]  J. Ule,et al.  Characterising the RNA targets and position-dependent splicing regulation by TDP-43; implications for neurodegenerative diseases , 2011, Nature Neuroscience.

[39]  J. Schulz,et al.  TDP-43-Mediated Neuron Loss In Vivo Requires RNA-Binding Activity , 2010, PloS one.

[40]  E. Buratti,et al.  The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation , 2010, RNA biology.

[41]  J. Trojanowski,et al.  Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: A spectrum of TDP‐43 proteinopathies , 2010, Neuropathology : official journal of the Japanese Society of Neuropathology.

[42]  Tobias M. Rasse,et al.  Knockdown of transactive response DNA‐binding protein (TDP‐43) downregulates histone deacetylase 6 , 2010, The EMBO journal.

[43]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[44]  J. Trojanowski,et al.  Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies , 2009, Acta Neuropathologica.

[45]  M. Neumann,et al.  Molecular Neuropathology of TDP-43 Proteinopathies , 2009, International journal of molecular sciences.

[46]  Andrea D'Ambrogio,et al.  Structural determinants of the cellular localization and shuttling of TDP-43 , 2008, Journal of Cell Science.

[47]  M. Morita,et al.  Phosphorylated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2008, Annals of neurology.

[48]  J. Trojanowski,et al.  Disturbance of Nuclear and Cytoplasmic TAR DNA-binding Protein (TDP-43) Induces Disease-like Redistribution, Sequestration, and Aggregate Formation* , 2008, Journal of Biological Chemistry.

[49]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[50]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[51]  J. Denu,et al.  The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. , 2003, Molecular cell.

[52]  T. Dörk,et al.  Nuclear factor TDP‐43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping , 2001, The EMBO journal.

[53]  N. Nomura,et al.  A New Family of Human Histone Deacetylases Related toSaccharomyces cerevisiae HDA1p* , 1999, The Journal of Biological Chemistry.

[54]  C. Van Lint,et al.  Characterization of a human RPD3 ortholog, HDAC3. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  E. Buratti,et al.  Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator of CFTR Exon 9* , 2001 .

[56]  Jeffry D Sander,et al.  FLAsH assembly of TALeNs for high-throughput genome editing , 2022 .