Uncertainties in Engineering Design. Mathematical Theory and Numerical Experience.

The paper addresses the question of the reliability of engineering computations. It presents a set of paradoxical, unexpected results which shows that the common practice can lead to unreliable results and conclusions. The theory and implementation of the analysis of elasticity problems with stochastic input data (loads, domain, coefficients) are outlined. Numerical examples illustrate the ideas and results.

[1]  Leonard Spunt,et al.  Optimum structural design , 1971 .

[2]  Philippe G. Ciarlet,et al.  JUSTIFICATION OF THE TWO-DIMENSIONAL LINEAR PLATE MODEL. , 1979 .

[3]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[4]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[5]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[6]  Edward J. Haug,et al.  Problems and methods of optimal structural design , 1983 .

[7]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[8]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[9]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[10]  Dietrich Morgenstern,et al.  Herleitung der plattentbeorie aus der dreidimensionalen elastizitätstheorie , 1959 .

[11]  J. Karlovský,et al.  On an Esaki diode having the curvature coefficient greater thane/kT , 1961 .

[12]  B. Szabó Mesh design for the p-version of the finite element method , 1986 .

[13]  Ivo Babuška,et al.  Устойчивость областей определения по отношению к основным задачам теории дифференциальных уравнеий в частных производных, главным образом в связи с теорией упругости, I , 1961 .

[14]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[15]  Ivo Babuška,et al.  On the Rates of Convergence of the Finite Element Method , 1982 .

[16]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[17]  I. Babuška Die Abhängigkeit der Lösung der Elastizitätsprobleme von kleinen Veränderungen des Definitionsgebietes , 1959 .

[18]  Robert V. Kohn,et al.  A new model for thin plates with rapidly varying thickness , 1984 .

[19]  Robert V. Kohn,et al.  Thin Plates with Rapidly Varying Thickness, and their Relation to Structural Optimization , 1986 .

[20]  Barna A. Szabó Implementation of a finite element software system with h and p extension capabilities , 1986 .

[21]  P. G. Ciarlet,et al.  Les équations de Von Kármán , 1980 .