Simulations of radiative effects on the Rayleigh–Taylor instability using the CRASH code

[1]  A. Miles THE BLAST-WAVE-DRIVEN INSTABILITY AS A VEHICLE FOR UNDERSTANDING SUPERNOVA EXPLOSION STRUCTURE , 2008 .

[2]  西田 昌平 Radiative B meson decays into Kπγ and Kππγ final states , 2003 .

[3]  I. V. Sokolov,et al.  CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS—IMPLEMENTATION AND VERIFICATION , 2011, 1101.3758.

[4]  R. P. Drake,et al.  Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility , 2011 .

[5]  Kodama,et al.  Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Omar Hurricane,et al.  An experimental testbed for the study of hydrodynamic issues in supernovae , 2000 .

[7]  Rayleigh-Taylor instability simulations with CRASH , 2012 .

[8]  R. P. Drake,et al.  Oblique radiative shocks, including their interactions with nonradiative polytropic shocksa) , 2011 .

[9]  X-ray emission from radiative shocks in type II supernovae , 2005, astro-ph/0510792.

[10]  Edward I. Moses,et al.  Ignition on the National Ignition Facility , 2007 .

[11]  K. Rohlena,et al.  Laboratory modeling of supersonic radiative jets propagation in plasmas and their scaling to astrophysical conditions , 2008 .

[12]  A. Burrows,et al.  Shock breakout in SN 1987A , 1992 .

[13]  B. Fryxell,et al.  Instabilities and clumping in SN 1987A. I, Early evolution in two dimensions , 1991 .

[14]  D. Ryutov,et al.  Phenomenological Theory of the Photoevaporation Front Instability , 2007 .

[15]  A. Edens,et al.  Secondary shock formation in xenon-nitrogen mixtures , 2006 .

[16]  R. Chevalier,et al.  Type II Supernovae SN 1987A and SN 1993J , 1997 .

[17]  R. P. Drake,et al.  Measurement of radiative shock properties by x-ray Thomson scattering. , 2012, Physical review letters.

[18]  T. S. Perry,et al.  High-Energy-Density Laboratory Astrophysics Studies of Jets and Bow Shocks , 2005 .

[19]  T. S. Perry,et al.  TWO-DIMENSIONAL BLAST-WAVE-DRIVEN RAYLEIGH–TAYLOR INSTABILITY: EXPERIMENT AND SIMULATION , 2009 .

[20]  R. P. Drake,et al.  Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics , 1999 .

[21]  G. Blumenthal,et al.  Rayleigh-Taylor Stability of Compressible and Incompressible Radiation-Supported Surfaces and Slabs: Application to QSO Clouds , 1977 .

[22]  R. P. Drake,et al.  Wall shocks in high-energy-density shock tube experiments , 2009 .

[23]  Richard I. Klein,et al.  The Interaction of Supernova Remnants with Interstellar Clouds: Experiments on the Nova Laser , 2003 .

[24]  R. G. Adams,et al.  Measurement of the decay rate of single-frequency perturbations on blast waves. , 2005, Physical review letters.

[25]  R. P. Drake,et al.  Theory of radiative shocks in the mixed, optically thick-thin case , 2010 .

[26]  B. Blue,et al.  LABORATORY EXPERIMENTS, NUMERICAL SIMULATIONS, AND ASTRONOMICAL OBSERVATIONS OF DEFLECTED SUPERSONIC JETS: APPLICATION TO HH 110 , 2009, 0910.0318.

[27]  B. Fryxell,et al.  Instability and clumping in SN 1987A , 1991 .

[28]  W. Arnett,et al.  Simulations of supernova-relevant hydrodynamic instability experiments on the Nova laser , 1997 .

[29]  R. P. Drake,et al.  Design of experiments to observe radiation stabilized Rayleigh-Taylor instability growth at an embedded decelerating interface , 2011 .

[30]  Janka,et al.  Nucleosynthesis and Clump Formation in a Core-Collapse Supernova. , 2000, The Astrophysical journal.

[31]  Radiative Rayleigh-Taylor instabilities , 2011, 1101.5265.

[32]  B. Fryxell,et al.  Instabilities and nonradial motion in SN 1987A , 1989 .

[33]  T. S. Perry,et al.  Nonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interface , 2004 .

[34]  R. Chevalier,et al.  Supernova 1987A at five years of age , 1992, Nature.

[35]  M. Koenig,et al.  Temperature and electron density measurements on laser driven radiative shocks , 2006 .

[36]  Non-spherical core collapse supernovae - II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A , 2005, astro-ph/0511369.

[37]  Kunioki Mima,et al.  Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma , 1985 .

[38]  R. P. Drake,et al.  Statistical inference in the presence of an inclination effect in laboratory radiative shock experiments , 2011 .

[39]  R. P. Drake SPIKE PENETRATION IN BLAST-WAVE-DRIVEN INSTABILITIES , 2009 .

[40]  C. Kuranz Blast-Wave-Driven, Multidimensional Rayleigh-Taylor Instability Experiments. , 2009 .

[41]  Robert L. McCrory,et al.  Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion , 1998 .

[42]  T. S. Perry,et al.  Observation of collapsing radiative shocks in laboratory experiments , 2006 .

[43]  O. Landen,et al.  Three-dimensional simulations of Nova high growth factor capsule implosion experiments , 1996 .

[44]  Supernova-relevant Hydrodynamic Instability Experiments on the Nova Laser , 1997 .

[45]  J. D. Kilkenny,et al.  A review of the ablative stabilization of the Rayleigh--Taylor instability in regimes relevant to inertial confinement fusion , 1994 .

[46]  T. Boehly,et al.  Experimental investigation of the three-dimensional interaction of a strong shock with a spherical density inhomogeneity. , 2002, Physical review letters.