The fabrication of CNTs/TiO2 photoanodes for sensitive determination of organic compounds

Titanium dioxide (TiO2) and carbon nanotubes (CNTs) are the two most popular functional materials in recent years. In this study, CNTs/TiO2 composite and TiO2 photoanodes were fabricated by a dip-coating technique, followed by subsequent calcination. The resultant photoanodes were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and UV–visible spectroscopy (UV–vis). The results suggest that the carbon nanotubes were successfully incorporated with the TiO2 nanoparticulates without damage and that the resultant TiO2 nanoparticles consisted of anatase and rutile. The CNTs/TiO2 photoanodes were capable of oxidizing various types of organic compounds (e.g. glucose, potassium hydrogen phthalate, and phenol) in aqueous solutions in a photoelectrochemical bulk cell. In comparison with the pure TiO2 photoanode, the sensitivity of the photoanode for the detection of organic compounds has been improved by 64%, while the background current was reduced by 80% due to the introduction of the CNTs. These advantages can be ascribed to the improved adsorptivity to organic compounds, increased absorption of UV light and enhanced electron transport at the CNTs/TiO2 photoanode due to the introduction of the CNTs.

[1]  Jiaguo Yu,et al.  A novel solid-state electrochemiluminescence sensor based on Ru(bpy)32 + immobilization on TiO2 nanotube arrays and its application for detection of amines in water , 2010, Nanotechnology.

[2]  Xianluo Hu,et al.  Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[3]  D. Eder Carbon nanotube-inorganic hybrids. , 2010, Chemical reviews.

[4]  S. Cho,et al.  Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes , 2009, Nanoscale research letters.

[5]  M. Lillo-Ródenas,et al.  TiO2 nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration , 2009 .

[6]  Huijun Zhao,et al.  A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters. , 2009, Environmental science & technology.

[7]  G. L. Puma,et al.  Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity , 2009 .

[8]  Marina E. Rincón,et al.  Sensor response of sol–gel multiwalled carbon nanotubes-TiO2 composites deposited by screen-printing and dip-coating techniques , 2009 .

[9]  W. Sigmund,et al.  Photocatalytic Carbon‐Nanotube–TiO2 Composites , 2009 .

[10]  Liaochuan Jiang,et al.  Electrodeposition of TiO2 Nanoparticles on Multiwalled Carbon Nanotube Arrays for Hydrogen Peroxide Sensing , 2009 .

[11]  Tomoaki Ikegami,et al.  Preparation of single-walled carbon nanotube/TiO2 hybrid atmospheric gas sensor operated at ambient temperature , 2009 .

[12]  Hongtao Yu,et al.  TiO2-carbon nanotube heterojunction arrays with a controllable thickness of TiO2 layer and their first application in photocatalysis , 2008 .

[13]  Hui Jiang,et al.  Electrochemical Biosensing for Cancer Cells Based on TiO2/CNT Nanocomposites Modified Electrodes , 2008 .

[14]  Feng Li,et al.  Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors , 2008, Nanotechnology.

[15]  G Van Tendeloo,et al.  Carbon nanotube–TiO2 hybrid films for detecting traces of O2 , 2008, Nanotechnology.

[16]  Zhongfan Liu,et al.  Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting , 2008, Nanotechnology.

[17]  Haibin Yang,et al.  Synthesis and characterization of TiO2 nanotubes for humidity sensing , 2008 .

[18]  Richard M. Lueptow,et al.  Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. , 2008, Environmental science & technology.

[19]  Xingping Ma,et al.  Effects of thermal treatment under different atmospheres on the spectroscopic properties of nanocrystalline TiO2 , 2008 .

[20]  A. Windle,et al.  Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes , 2008 .

[21]  Fushen Li,et al.  Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electro-oxidation , 2008 .

[22]  L. Kavan,et al.  Structural properties and electrochemical behavior of CNT‐TiO2 nanocrystal heterostructures , 2007 .

[23]  M. L. Curri,et al.  Thin films of TiO2 nanocrystals with controlled shape and surface coating for surface plasmon resonance alcohol vapour sensing , 2007 .

[24]  A. Fujishima,et al.  Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup , 2007 .

[25]  Wanhong Ma,et al.  Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation , 2007 .

[26]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[27]  Fushen Li,et al.  Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support , 2007 .

[28]  A. Reddy,et al.  Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes , 2007 .

[29]  Anusorn Kongkanand,et al.  Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. , 2007, Nano letters.

[30]  Xingbin Yan,et al.  Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 sol. , 2006, The journal of physical chemistry. B.

[31]  Shan Gao,et al.  Preparation and gas-sensing property of a nanosized titania thin film towards alcohol gases , 2006 .

[32]  I. Kinloch,et al.  Pure rutile nanotubes. , 2006, Chemical communications.

[33]  Jan Augustynski,et al.  Photoanodic reactions occurring at nanostructured titanium dioxide films , 2006 .

[34]  N. Nakashima,et al.  A Mesoporous Nanocomposite of TiO2 and Carbon Nanotubes as a High‐Rate Li‐Intercalation Electrode Material , 2006 .

[35]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[36]  Jiaguo Yu,et al.  Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes , 2005 .

[37]  J. Wilcoxon,et al.  Nanosize Semiconductors for Photooxidation , 2005 .

[38]  Jerry D. Harris,et al.  Carbon nanotubes for power applications , 2005 .

[39]  T. Kitamura,et al.  Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells , 2004 .

[40]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[41]  Qiang Zhang,et al.  Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis , 2000 .

[42]  D. Ollis,et al.  Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II) : Photocatalytic mechanisms , 1999 .

[43]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .

[44]  M. Hoffmann,et al.  Photocatalytic degradation of pentachlorophenol on titanium dioxide particles: identification of intermediates and mechanism of reaction , 1993 .

[45]  Sheikh A. Akbar,et al.  Carbon Monoxide and Hydrogen Detection by Anatase Modification of Titanium Dioxide , 1992 .

[46]  P. Couturier Japan , 1988, The Lancet.

[47]  Huijun Zhao,et al.  Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/ rutile phases. , 2007, Environmental science & technology.

[48]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .