On the Distributions of the Lengths of the Longest Increasing and Decreasing Subsequences in Random Words

We consider the distributions of the lengths of the longest weakly increasing and strongly decreasing subsequences in words of length N from an alphabet of k letters. (In the limit as k → ∞ these become the corresponding distributions for permutations on N letters.) We find Toeplitz determinant representations for the exponential generating functions (on N) of these distribution functions and show that they are expressible in terms of solutions of Painlevé V equations. We show further that in the weakly increasing case the generating function gives the distribution of the smallest eigenvalue in the k × k Laguerre random matrix ensemble and that the distribution itself has, after centering and normalizing, an N → ∞ limit which is equal to the distribution function for the largest eigenvalue in the k × k Gaussian Unitary Ensemble.

[1]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[2]  J. Baik,et al.  On the distribution of the length of the second row of a Young diagram under Plancherel measure , 1999, math/9901118.

[3]  P. Clarkson,et al.  A connection formula for the second Painlevé transcendent , 1988 .

[4]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[5]  C. Cosgrove Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .

[6]  Alexei Borodin,et al.  Longest Increasing Subsequences of Random Colored Permutations , 1999, Electron. J. Comb..

[7]  Nico M. Temme,et al.  Asymptotic estimates for Laguerre polynomials , 1990 .

[8]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[9]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[10]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[11]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[12]  Eric M. Rains,et al.  Increasing Subsequences and the Classical Groups , 1998, Electron. J. Comb..

[13]  Jonathan M. Borwein,et al.  On the Representations of xy + yz + ZX , 2000, Exp. Math..

[14]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .

[15]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[16]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[17]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[18]  UNITARY MATRIX MODELS AND PAINLEVÉ III , 1996, hep-th/9609214.

[19]  Craig A. Tracy,et al.  Random Unitary Matrices, Permutations and Painlevé , 1999 .

[20]  K. Johansson THE LONGEST INCREASING SUBSEQUENCE IN A RANDOM PERMUTATION AND A UNITARY RANDOM MATRIX MODEL , 1998 .

[21]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[22]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[23]  A. Okounkov Random matrices and ramdom permutations , 1999, math/9903176.

[24]  C. M. Cosgrove,et al.  Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .

[25]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[26]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[27]  Carol Bult,et al.  PERMUTATIONS , 1994 .

[28]  P. Diaconis,et al.  Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .

[29]  Arun Ram,et al.  Book Review: Young tableaux: With applications to representation theory and geometry , 1999 .

[30]  Craig A. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .

[31]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.