Vertex‐labeling algorithms for the Hilbert spacefilling curve

We describe a method, based on vertex‐labeling, to generate algorithms for manipulating the Hilbert spacefilling curve. The method leads to algorithms for: computing the image of a point in R1; computing a pre‐image of a point in R2; drawing a finite approximation of the curve; finding neighbor cells in a decomposition ordered according to the curve.

[1]  Arthur R. Butz,et al.  Alternative Algorithm for Hilbert's Space-Filling Curve , 1971, IEEE Transactions on Computers.

[2]  Theodore Bially,et al.  Space-filling curves: Their generation and their application to bandwidth reduction , 1969, IEEE Trans. Inf. Theory.

[3]  Michael Lindenbaum,et al.  On the metric properties of discrete space-filling curves , 1996, IEEE Trans. Image Process..

[4]  J. G. Griffiths An algorithm for displaying a class of space‐filling curves , 1986, Softw. Pract. Exp..

[5]  Christoph Schierz,et al.  Algorithm 781: generating Hilbert's space-filling curve by recursion , 1998, TOMS.

[6]  J. Griffiths,et al.  Table-driven algorithms for generating space-filling curves , 1985 .

[7]  Xian Liu,et al.  An algorithm for encoding and decoding the 3-D Hilbert order , 1997, IEEE Trans. Image Process..

[8]  Arthur R. Butz,et al.  Convergence with Hilbert's Space Filling Curve , 1969, J. Comput. Syst. Sci..

[9]  W. G. Nulty,et al.  Geometric searching with spacefilling curves , 1993 .

[10]  David M. Mark,et al.  A Comparative Analysis of some 2-Dimensional Orderings , 1990, Int. J. Geogr. Inf. Sci..

[11]  John J. Bartholdi A Continuous Spatial Index of a Triangulated Surface , 1999 .

[12]  Hans Sagan On the Geometrization of the Peano Curve and the Arithmetization of the Hilbert Curve , 1992 .

[13]  P. Ross TURTLE GEOMETRY The Computer as a Medium for Exploring Mathematics , 1987 .

[14]  Leslie M. Goldschlager Short algorithms for space‐filling curves , 1981, Softw. Pract. Exp..

[15]  Derek Thompson,et al.  Fundamentals of spatial information systems , 1992, A.P.I.C. series.

[16]  Sei-ichiro Kamata,et al.  A new algorithm for N-dimensional Hilbert scanning , 1999, IEEE Trans. Image Process..

[17]  Xian Liu,et al.  A New Ordering Strategy Applied to Spatial Data Processing , 1998, Int. J. Geogr. Inf. Sci..

[18]  Michael Lindenbaum,et al.  Euclidean Voronoi labelling on the multidimensional grid , 1995, Pattern Recognit. Lett..

[19]  G. Peano Sur une courbe, qui remplit toute une aire plane , 1890 .

[20]  A. J. Fisher A new algorithm for generating hilbert curves , 1986, Softw. Pract. Exp..

[21]  H. V. Jagadzsh Linear Clustering of Objects with Multiple Attributes , 1998 .

[22]  John J. Bartholdi,et al.  Continuous indexing of hierarchical subdivisions of the globe , 2001, Int. J. Geogr. Inf. Sci..

[23]  L. Platzman,et al.  Heuristics Based on Spacefilling Curves for Combinatorial Problems in Euclidean Space , 1988 .

[24]  Niklaus Wirth,et al.  Algorithms + Data Structures = Programs , 1976 .

[25]  Günther F. Schrack,et al.  Encoding and decoding the Hilbert order , 1996 .

[26]  Brian Wyvill,et al.  On the generation and use of space‐filling curves , 1983, Softw. Pract. Exp..