Efficient Photocatalytic H2 Evolution: Controlled Dewetting–Dealloying to Fabricate Site‐Selective High‐Activity Nanoporous Au Particles on Highly Ordered TiO2 Nanotube Arrays

Anodic self-organized TiO2 nanostumps are formed and exploited for self-ordering dewetting of Au-Ag sputtered films. This forms ordered particle configurations at the tube top (crown position) or bottom (ground position). By dealloying from a minimal amount of noble metal, porous Au nanoparticles are then formed, which, when in the crown position, allow for a drastically improved photocatalytic H2 production compared with nanoparticles produced by conventional dewetting processes.

[1]  C. Thompson,et al.  Effect of surface energy anisotropy on Rayleigh-like solid-state dewetting and nanowire stability , 2015 .

[2]  M. Hartmann,et al.  Hydrogenated anatase: strong photocatalytic dihydrogen evolution without the use of a co-catalyst. , 2014, Angewandte Chemie.

[3]  P. Schmuki,et al.  One-dimensional titanium dioxide nanomaterials: nanotubes. , 2014, Chemical reviews.

[4]  Marco Altomare,et al.  "Suspended" Pt nanoparticles over TiO₂ nanotubes for enhanced photocatalytic H₂ evolution. , 2014, Chemical communications.

[5]  M. Hartmann,et al.  Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. , 2014, Nano letters.

[6]  Jian Shi,et al.  One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. , 2014, Chemical reviews.

[7]  M. Jensen,et al.  Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. , 2014, ACS nano.

[8]  P. Schmuki,et al.  Intrinsic Au Decoration of Growing TiO2 Nanotubes and Formation of a High‐Efficiency Photocatalyst for H2 Production , 2013, Advanced materials.

[9]  P. Schmuki,et al.  Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps , 2013 .

[10]  P. Schmuki,et al.  Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system. , 2013, Angewandte Chemie.

[11]  Nobuo Tanaka,et al.  Atomic origins of the high catalytic activity of nanoporous gold. , 2012, Nature materials.

[12]  Carl V. Thompson,et al.  Solid-State Dewetting of Thin Films , 2012 .

[13]  Luke P. Lee,et al.  Self-assembled three-dimensional nanocrown array. , 2012, ACS nano.

[14]  Shikuan Yang,et al.  Template‐Confined Dewetting Process to Surface Nanopatterns: Fabrication, Structural Tunability, and Structure‐Related Properties , 2011 .

[15]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[16]  R. F. Howe,et al.  The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO₂ nanoparticles. , 2011, Nature chemistry.

[17]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[18]  T. He,et al.  Anatase TiO(2) single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis. , 2010, Chemical communications.

[19]  P. Petit,et al.  Effect of Hydrogen Pressure on the Size of Nickel Nanoparticles Formed during Dewetting and Reduction of Thin Nickel Films , 2010 .

[20]  Tanya Karakouz,et al.  Morphology and Refractive Index Sensitivity of Gold Island Films , 2009 .

[21]  C. Thompson,et al.  Cobalt nanoparticle arrays made by templated solid-state dewetting. , 2009, Small.

[22]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[23]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[24]  Mingwei Chen,et al.  Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation , 2007 .

[25]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[26]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[27]  Xiaohong Xu,et al.  Low temperature CO oxidation over unsupported nanoporous gold. , 2007, Journal of the American Chemical Society.

[28]  C. Thompson,et al.  Solid-state dewetting for ordered arrays of crystallographically oriented metal particles , 2005 .

[29]  Aiqin Wang,et al.  Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. , 2005, The journal of physical chemistry. B.

[30]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[31]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[32]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[33]  A. J. Forty Corrosion micromorphology of noble metal alloys and depletion gilding , 1979, Nature.

[34]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.