Trust Region Based Mode Pursuing Sampling Method for Global Optimization of High Dimensional Design Problems

Mode pursuing sampling (MPS) was developed as a global optimization algorithm for design optimization problems involving expensive black box functions. MPS has been found to be effective and efficient for design problems of low dimensionality, i.e., the number of design variables is less than 10. This work integrates the concept of trust regions into the MPS framework to create a new algorithm, trust region based mode pursuing sampling (TRMPS2), with the aim of dramatically improving performance and efficiency for high dimensional problems. TRMPS2 is benchmarked against genetic algorithm (GA), dividing rectangles (DIRECT), efficient global optimization (EGO), and MPS using a suite of standard test problems and an engineering design problem. The results show that TRMPS2 performs better on average than GA, DIRECT, EGO, and MPS for high dimensional, expensive, and black box (HEB) problems. [DOI: 10.1115/1.4029219]

[1]  G. Gary Wang,et al.  Performance study of mode-pursuing sampling method , 2009 .

[2]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[3]  G. Gary Wang,et al.  Trust Region based MPS Method for Global Optimization of High Dimensional Design Problems , 2012 .

[4]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[5]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[6]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[7]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, ANTS Conference.

[8]  Sven Leyffer,et al.  A Trust-Region Algorithm for Global Optimization , 2006, Comput. Optim. Appl..

[9]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[10]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.

[11]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[12]  Christopher R. Houck,et al.  A Genetic Algorithm for Function Optimization: A Matlab Implementation , 2001 .

[13]  Kambiz Haji Hajikolaei,et al.  Decomposition for large-scale global optimization based on quantified variable correlations uncovered by metamodelling , 2015 .

[14]  Raphael T. Haftka,et al.  Global structural optimization of a stepped cantilever beam using quasi-separable decomposition , 2010 .

[15]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[16]  G. G. Wang,et al.  Mode Pursuing Sampling Method for Discrete Variable Optimization on Expensive Black-Box Functions , 2008 .

[17]  Raphael T. Haftka,et al.  Optimization and Experiments: A Survey , 1998 .

[18]  Masayuki Yamamura,et al.  A Genetic Algorithm for Function Optimization , 2002 .

[19]  L. Watson,et al.  Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization , 1998 .

[20]  G. Vanderplaats,et al.  Survey of Discrete Variable Optimization for Structural Design , 1995 .

[21]  Fabian Duddeck,et al.  Multidisciplinary optimization of car bodies , 2008 .

[22]  G. G. Wang,et al.  Mode-pursuing sampling method for global optimization on expensive black-box functions , 2004 .

[23]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[24]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[25]  Liqun Wang,et al.  A Random-Discretization Based Monte Carlo Sampling Method and its Applications , 2002 .

[26]  D. Eichmann More Test Examples For Nonlinear Programming Codes , 2016 .

[27]  G. G. Wang,et al.  Metamodeling for High Dimensional Simulation-Based Design Problems , 2010 .

[28]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[29]  Yeh-Liang Hsu,et al.  A sequential approximation method using neural networks for engineering design optimization problems , 2003 .