Next generation sequencing reads comparison with an alignment-free distance

[1]  Daniele Santoni,et al.  Next generation sequencing reads comparison with an alignment-free distance , 2014, BMC Research Notes.

[2]  P. Bucher,et al.  Classification of selectively constrained DNA elements using feature vectors and rule-based classifiers. , 2014, Genomics.

[3]  Kai Song,et al.  Alignment-Free Sequence Comparison Based on Next-Generation Sequencing Reads , 2013, J. Comput. Biol..

[4]  Scott C Edmunds,et al.  Peering into peer-review at GigaScience , 2013, GigaScience.

[5]  Inanç Birol,et al.  Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species , 2013, GigaScience.

[6]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[7]  Michael Eisenstein,et al.  The battle for sequencing supremacy , 2012, Nature Biotechnology.

[8]  Lin Liu,et al.  Comparison of Next-Generation Sequencing Systems , 2012, Journal of biomedicine & biotechnology.

[9]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[10]  Pavel A Pevzner,et al.  How to apply de Bruijn graphs to genome assembly. , 2011, Nature biotechnology.

[11]  Nuno A. Fonseca,et al.  Assemblathon 1: a competitive assessment of de novo short read assembly methods. , 2011, Genome research.

[12]  S. Koren,et al.  Assembly algorithms for next-generation sequencing data. , 2010, Genomics.

[13]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[14]  Vladimir Pavlovic,et al.  Efficient alignment-free DNA barcode analytics , 2009, BMC Bioinformatics.

[15]  Inanç Birol,et al.  De novo transcriptome assembly with ABySS , 2009, Bioinform..

[16]  Mihai Pop,et al.  Parametric Complexity of Sequence Assembly: Theory and Applications to Next Generation Sequencing , 2009, J. Comput. Biol..

[17]  Raffaele Giancarlo,et al.  Textual data compression in computational biology: a synopsis , 2009, Bioinform..

[18]  Piotr Gawron,et al.  Whole genome assembly from 454 sequencing output via modified DNA graph concept , 2009, Comput. Biol. Chem..

[19]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[20]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[21]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[22]  Frank Oliver Glöckner,et al.  TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences , 2004, BMC Bioinformatics.

[23]  R. Amann,et al.  Application of tetranucleotide frequencies for the assignment of genomic fragments. , 2004, Environmental microbiology.

[24]  Jonas S. Almeida,et al.  Alignment-free sequence comparison-a review , 2003, Bioinform..

[25]  M. Blaser,et al.  Evolutionary implications of microbial genome tetranucleotide frequency biases. , 2003, Genome research.

[26]  Jonas S. Almeida,et al.  Universal sequence map (USM) of arbitrary discrete sequences , 2002, BMC Bioinformatics.

[27]  Winston Hide,et al.  Biological Evaluation of d2, an Algorithm for High-Performance Sequence Comparison , 1994, J. Comput. Biol..

[28]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[29]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[30]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .