Advance Single Node Queuing Models

Multiserver queueing systems are very useful in modelling telecommunication systems. Usually in such systems we have several channels that are used for communications. These are considered as parallel servers in a queueing system. Throughout this chapter we will be dealing with cases where the parallel servers are identical. The case of heterogeneous servers will not be covered in this book.

[1]  Winfried K. Grassmann,et al.  Regenerative Analysis and Steady State Distributions for Markov Chains , 1985, Oper. Res..

[2]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[3]  Beatrice Meini,et al.  On the Solution of a Nonlinear Matrix Equation Arising in Queueing Problems , 1996, SIAM J. Matrix Anal. Appl..

[4]  Marcel F. Neuts,et al.  Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1989 .

[5]  Michael A. Johnson,et al.  Matching moments to phase distri-butions: mixtures of Erlang distribution of common order , 1989 .

[6]  Winfried K. Grassmann,et al.  Equilibrium distribution of block-structured Markov chains with repeating rows , 1990, Journal of Applied Probability.

[7]  Naishuo Tian,et al.  The Discrete-Time GI/Geo/1 Queue with Multiple Vacations , 2002, Queueing Syst. Theory Appl..

[8]  Attahiru Sule Alfa,et al.  Markov chain representations of discrete distributions applied to queueing models , 2004, Comput. Oper. Res..

[9]  Lester Lipsky,et al.  Queueing Theory: A Linear Algebraic Approach , 1992 .

[10]  Attahiru Sule Alfa,et al.  Discrete NT-policy single server queue with Markovian arrival process and phase type service , 1996 .

[11]  Attahiru Sule Alfa,et al.  Duality results for block-structured transition matrices , 1999 .

[12]  Herbert P. Galliher,et al.  Nonstationary Queuing Probabilities for Landing Congestion of Aircraft , 1958 .

[13]  P. Jacobs,et al.  Finite birth-and-death models in randomly changing environments , 1984, Advances in Applied Probability.

[14]  James R. Jackson,et al.  Jobshop-Like Queueing Systems , 2004, Manag. Sci..

[15]  U. Yechiali,et al.  Utilization of idle time in an M/G/1 queueing system Management Science 22 , 1975 .

[16]  Miklós Telek,et al.  Acyclic discrete phase type distributions: properties and a parameter estimation algorithm , 2003, Perform. Evaluation.

[17]  Attahiru Sule Alfa,et al.  Discrete‐time analysis of MAP/PH/1 multiclass general preemptive priority queue , 2003 .

[18]  Vaidyanathan Ramaswami,et al.  A logarithmic reduction algorithm for quasi-birth-death processes , 1993, Journal of Applied Probability.

[19]  M. Neuts,et al.  A single-server queue with server vacations and a class of non-renewal arrival processes , 1990, Advances in Applied Probability.

[20]  Herwig Bruneel,et al.  Discrete-time models for communication systems including ATM , 1992 .

[21]  V. Ramaswami A stable recursion for the steady state vector in markov chains of m/g/1 type , 1988 .

[22]  A. Alfa Matrix‐geometric solution of discrete time MAP/PH/1 priority queue , 1998 .

[23]  Mohan L. Chaudhry,et al.  On Numerical Computations of Some Discrete-Time Queues , 2000 .

[24]  Bharat T. Doshi,et al.  A note on stochastic decomposition in a GI/G/1 queue with vacations or set-up times , 1985, Journal of Applied Probability.

[25]  B. T. Doshi,et al.  Queueing systems with vacations — A survey , 1986, Queueing Syst. Theory Appl..

[26]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[27]  Marcel F. Neuts Models Based on the Markovian Arrival Process , 1992 .

[28]  Raymond W. Yeung,et al.  Matrix product-form solutions for Markov chains with a tree structure , 1994 .

[29]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[30]  Attahiru Sule Alfa,et al.  A discrete MAP/PH/1 queue with vacations and exhaustive time-limited service , 1995, Oper. Res. Lett..

[31]  D. Kendall Some Problems in the Theory of Queues , 1951 .

[32]  Tetsuya Takine,et al.  A NEW ALGORITHM FOR COMPUTING THE RATE MATRIX OF GI/M/1 TYPE MARKOV CHAINS , 2002 .

[33]  Daniel P. Heyman,et al.  Accurate Computation of the Fundamental Matrix of a Markov Chain , 1995, SIAM J. Matrix Anal. Appl..

[34]  Attahiru Sule Alfa,et al.  Algorithmic analysis of the BMAP/D/k system in discrete time , 2003, Advances in Applied Probability.

[35]  Tetsuya Takine,et al.  A generalization of the matrix M/G/l paradigm for Markov chains with a tree structure , 1995 .

[36]  Carl M. Harris,et al.  Fundamentals of queueing theory , 1975 .

[37]  M. Neuts A Versatile Markovian Point Process , 1979 .

[38]  Marcel F. Neuts,et al.  The single server queue in discrete time‐numerical analysis III , 1973 .

[39]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .

[40]  Vaidyanathan Ramaswami,et al.  The PH/PH/1 queue at epochs of queue size change , 1997, Queueing Syst. Theory Appl..

[41]  Marcel F. Neuts,et al.  A SINGLE SERVER QUEUE IN DISCRETE TIME. , 1969 .