Mass Spectrometry and Theoretical Studies on N–C Bond Cleavages in the N-Sulfonylamidino Thymine Derivatives

[1]  C. Weisbecker,et al.  Low-Energy Collision-Induced Dissociation Mass Spectra of Protonated p-Toluenesulfonamides Derived from Aliphatic Amines , 2014, Journal of The American Society for Mass Spectrometry.

[2]  C. Weisbecker,et al.  Gas-Phase Fragmentations of Anions Derived from N-Phenyl Benzenesulfonamides , 2013, Journal of The American Society for Mass Spectrometry.

[3]  A. Fattahi,et al.  Comparison of gas phase intrinsic properties of cytosine and thymine nucleobases with their O-alkyl adducts: different hydrogen bonding preferences for thymine versus O-alkyl thymine , 2013, Journal of Molecular Modeling.

[4]  M. Bajić,et al.  Synthesis of Novel Aliphatic N-sulfonylamidino Thymine Derivatives by Cu(I)-catalyzed Three-component Coupling Reaction , 2012 .

[5]  I. Bald,et al.  Metastable fragmentation of a thymidine-nucleotide and its components , 2012 .

[6]  I. Piantanida,et al.  Synthesis, DNA/RNA affinity and antitumour activity of new aromatic diamidines linked by 3,4-ethylenedioxythiophene. , 2011, European journal of medicinal chemistry.

[7]  S. Boncel,et al.  Michael versus retro-Michael reaction in the regioselective synthesis of N-1 and N-3 uracil adducts , 2010 .

[8]  Jennifer Zhang,et al.  Investigation of collision-induced dissociations involving odd-electron ion formation under positive electrospray ionization conditions using accurate mass. , 2010, Rapid communications in mass spectrometry : RCM.

[9]  S. Boncel,et al.  Uracil as a Target for Nucleophilic and Electrophilic Reagents , 2008 .

[10]  Peng-Yuan Liu,et al.  Mechanism study of SO2 elimination from sulfonamides by negative electrospray ionization mass spectrometry. , 2008, Rapid communications in mass spectrometry : RCM.

[11]  D. Boykin,et al.  Antiparasitic compounds that target DNA. , 2008, Biochimie.

[12]  David Q. Liu,et al.  Fragmentation of aromatic sulfonamides in electrospray ionization mass spectrometry: elimination of SO(2) via rearrangement. , 2008, Journal of mass spectrometry : JMS.

[13]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[14]  S. Boncel,et al.  The Influence of Base on Regioselectivity of 5-Substituted Uracils Addition to Michael Acceptors. , 2007 .

[15]  K. Winnicka,et al.  Novel amidine analogue of melphalan as a specific multifunctional inhibitor of growth and metabolism of human breast cancer cells. , 2006, Biochemical pharmacology.

[16]  Slawomir Boncel and Krzysztof Walczak The Influence of Base on Regioselectivity of 5-Substituted Uracils Addition to Michael Acceptors , 2006 .

[17]  Sukbok Chang,et al.  A facile access to N-sulfonylimidates and their synthetic utility for the transformation to amidines and amides. , 2006, Organic letters.

[18]  Yinlong Guo,et al.  Mass spectrometric studies of the gas phase retro-Michael type fragmentation reactions of 2-hydroxybenzyl-N-pyrimidinylamine derivatives , 2005, Journal of the American Society for Mass Spectrometry.

[19]  R. Stojković,et al.  Antitumor activity of novel N-sulfonylpyrimidine derivatives on the growth of anaplastic mammary carcinoma in vivo , 2004, Journal of Cancer Research and Clinical Oncology.

[20]  T. Baillie,et al.  The unanticipated loss of SO2 from sulfonamides in collision-induced dissociation. , 2003, Rapid communications in mass spectrometry : RCM.

[21]  Jeehiun K. Lee,et al.  The acidity of uracil and uracil analogs in the gas phase: Four surprisingly acidic sites and biological implications , 2002, Journal of the American Society for Mass Spectrometry.

[22]  V. Cardile,et al.  Amidinobenzisothiazole derivatives with antidegenerative activity on cartilage. , 2002, Farmaco.

[23]  S. Tobinaga,et al.  A new concise synthesis of arcyriacyanin A and its unique inhibitory activity against a panel of human cancer cell line. , 2000, Chemical & pharmaceutical bulletin.

[24]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[25]  M. Sridhar,et al.  Expedient and Simple Method for Regeneration of Alcohols from Toluenesulfonates Using Mg—MeOH. , 1998 .

[26]  A. Yasuhara,et al.  Deprotection of N‐Sulfonyl Nitrogen‐Heteroaromatics with Tetrabutylammonium Fluoride. , 1998 .

[27]  M. Sridhar,et al.  Expedient and simple method for regeneration of alcohols from toluenesulfonates using MgMeOH , 1998 .

[28]  T. Sakamoto,et al.  Deprotection of N-sulfonyl nitrogen-heteroaromatics with tetrabutylammonium fluoride , 1998 .

[29]  A. P. Land,et al.  Application of liquid chromatography-mass spectrometry(n) analyses to the characterization of novel glyburide metabolites formed in vitro. , 1998, Journal of chromatography. A.

[30]  Károly Vékey,et al.  Internal Energy Effects in Mass Spectrometry , 1996 .

[31]  Y. Yokoyama,et al.  Synthetic Studies on Indoles and Related Compounds. Part 37. Synthetic Studies of 1,2,3,4-Tetrahydro-1,3,4-trioxo-β-carboline Alkaloids. Part 1. , 1996 .

[32]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[33]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[34]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[35]  J. Pople,et al.  Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements , 1982 .

[36]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[37]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[38]  W. Closson,et al.  Cleavage of sulfonamides with sodium naphthalene , 1967 .

[39]  L. Glavaš-Obrovac,et al.  In vivo toxicity study of N-1-sulfonylcytosine derivatives and their mechanisms of action in cervical carcinoma cell line , 2011, Investigational New Drugs.

[40]  Tomislav Šmuc,et al.  Atypical cytostatic mechanism of N-1-sulfonylcytosine derivatives determined by in vitro screening and computational analysis , 2007, Investigational New Drugs.

[41]  Y. Yokoyama,et al.  Synthetic studies on indoles and related compounds. Part 46.1 First total syntheses of 4,8-dioxygenated β-carboline alkaloids , 1999 .

[42]  D. Volmer Multiresidue determination of sulfonamide antibiotics in milk by short-column liquid chromatography coupled with electrospray ionization tandem mass spectrometry. , 1996, Rapid communications in mass spectrometry : RCM.

[43]  J. V. Greenhill,et al.  Amidines and guanidines in medicinal chemistry. , 1993, Progress in medicinal chemistry.

[44]  D. Tanner,et al.  Stereocontrolled synthesis of the spirocyclic alkaloid (±)-nitramine , 1988 .

[45]  P. Hodge,et al.  Protective groups in organic synthesis , 1981 .

[46]  D. Larwood,et al.  Facile conversion of adenosine into new 2′-substituted-2′-deoxy-arabinofuranosyladenine derivatives: Stereospecific syntheses of 2′-azido-2′-deoxy-,2′-amino-2′- deoxy-, and 2′-mercapto-2′-deoxy-β-d-arabinofuranosyladenines , 1978 .