Campaign Optimization Through Behavioral Modeling and Mobile Network Analysis

Optimizing the use of available resources is one of the key challenges in activities that consist of interactions with a large number of “target individuals,” with the ultimate goal of “winning” as many of them as possible, such as in marketing, service provision, political campaigns, or homeland security. Typically, the cost of interactions is monotonically increasing such that a method for maximizing the performance of these campaigns iPs required. In this paper, we propose a mathematical model to compute an optimized campaign by automatically determining the number of interacting units and their type, and how they should be allocated to different geographical regions in order to maximize the campaign's performance. We validate our proposed model using real world mobility data.

[1]  L. Bianco,et al.  Combinatorial aspects of the sensor location problem , 2006, Ann. Oper. Res..

[2]  Roland T. Rust Selecting network television advertising schedules , 1985 .

[3]  Yogesh Virkar,et al.  Power-law distributions in binned empirical data , 2012, 1208.3524.

[4]  Jeho Lee,et al.  Role of network structure and network effects in diffusion of innovations , 2010 .

[5]  Rami Puzis,et al.  Incremental deployment of network monitors based on Group Betweenness Centrality , 2009, Inf. Process. Lett..

[6]  Dominique M. Hanssens,et al.  Market Response Models: Econometric and Time Series Analysis , 1989 .

[7]  Mel Slater,et al.  Spatial Social Behavior in Second Life , 2007, IVA.

[8]  Leonard M. Lodish,et al.  A Media Planning Calculus , 1969, Oper. Res..

[9]  A. Pentland,et al.  Computational Social Science , 2009, Science.

[10]  G. Tellis The Price Elasticity of Selective Demand: A Meta-Analysis of Econometric Models of Sales , 1988 .

[11]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[12]  S. Bekhor,et al.  Evaluating long‐distance travel patterns in Israel by tracking cellular phone positions , 2013 .

[13]  S. Borgatti,et al.  Betweenness centrality measures for directed graphs , 1994 .

[14]  Peter J. Danaher,et al.  PARAMETER ESTIMATION AND APPLICATIONS FOR A GENERALISATION OF THE BETA‐BINOMIAL DISTRIBUTION , 1988 .

[15]  Peter J. Danaher,et al.  Determining the optimal return on investment for an advertising campaign , 1996 .

[16]  Sumit K. Majumdar,et al.  Wearout Effects of Different Advertising Themes: A Dynamic Bayesian Model of the Advertising-Sales Relationship , 2007 .

[17]  Rami Puzis,et al.  Potential Search: A Bounded-Cost Search Algorithm , 2011, ICAPS.

[18]  Robert S. Kaplan,et al.  Discount Effects on Media Plans , 1971 .

[19]  Michael J. Naples Effective frequency : the relationship between frequency and advertising effectiveness , 1979 .

[20]  Peter Sheridan Dodds,et al.  Universal behavior in a generalized model of contagion. , 2004, Physical review letters.

[21]  Suresh Sethi,et al.  Generic and Brand Advertising Strategies in a Dynamic Duopoly , 2005 .

[22]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[23]  John D. C. Little,et al.  Feature Article - Aggregate Advertising Models: The State of the Art , 1979, Oper. Res..

[24]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[25]  N. Eagle,et al.  Network Diversity and Economic Development , 2010, Science.

[26]  S. Sriram,et al.  Optimal Advertising and Promotion Budgets in Dynamic Markets with Brand Equity as a Mediating Variable , 2007, Manag. Sci..

[27]  Rami Puzis,et al.  Optimization of NIDS Placement for Protection of Intercommunicating Critical Infrastructures , 2008, EuroISI.

[28]  Luca Lambertini,et al.  Advertising in a dynamic spatial monopoly , 2005, Eur. J. Oper. Res..

[29]  J. Friedman Advertising and Oligopolistic Equilibrium , 1983 .

[30]  P. Currie,et al.  Tyrannosaur Life Tables: An Example of Nonavian Dinosaur Population Biology , 2006, Science.

[31]  Fang Wu,et al.  Social Networks that Matter: Twitter Under the Microscope , 2008, First Monday.

[32]  Hani I. Mesak,et al.  On the generalizability of advertising pulsation monopoly results to an oligopoly , 1999, Eur. J. Oper. Res..

[33]  Yaniv Altshuler,et al.  Static and expanding grid coverage with ant robots: Complexity results , 2011, Theor. Comput. Sci..

[34]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[35]  C. Herrero,et al.  Ising model in scale-free networks: a Monte Carlo simulation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  P. Drucker The new productivity challenge. , 1991, Harvard business review.

[37]  Jim Surmanek Media Planning: A Practical Guide , 1985 .

[38]  Maxime C. Cohen,et al.  Designing Price Incentives in a Network with Social Interactions , 2013, Manuf. Serv. Oper. Manag..

[39]  D. Watts,et al.  An Experimental Study of Search in Global Social Networks , 2003, Science.

[40]  Rami Puzis,et al.  Finding the most prominent group in complex networks , 2007, AI Commun..

[41]  Giorgio Parisi,et al.  Physica A: Statistical Mechanics and its Applications: Editorial note , 2005 .

[42]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[43]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[44]  Israel A. Wagner,et al.  The Cooperative Hunters — Efficient Cooperative Search For Smart Targets Using UAV Swarms , 2016 .

[45]  Kenneth R. Deal Optimizing Advertising Expenditures in a Dynamic Duopoly , 1979, Oper. Res..

[46]  John Scott Social Network Analysis , 1988 .

[47]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[48]  David Lazer,et al.  Inferring friendship network structure by using mobile phone data , 2009, Proceedings of the National Academy of Sciences.

[49]  Shlomo Bekhor,et al.  Intercity Person Trip Tables for Nationwide Transportation Planning in Israel Obtained from Massive Cell Phone Data , 2009 .

[50]  Cesar Beltran-Royo,et al.  Multistage multiproduct advertising budgeting , 2013, Eur. J. Oper. Res..

[51]  K. Arrow,et al.  OPTIMAL ADVERTISING POLICY UNDER DYNAMIC CONDITIONS , 1962 .

[52]  Etienne Huens,et al.  Geographical dispersal of mobile communication networks , 2008, 0802.2178.

[53]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[54]  Ulrik Brandes,et al.  On variants of shortest-path betweenness centrality and their generic computation , 2008, Soc. Networks.

[55]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[56]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[57]  J. Anthonisse The rush in a directed graph , 1971 .

[58]  S. Borgatti,et al.  The centrality of groups and classes , 1999 .

[59]  Peter J. Danaher,et al.  Determining the optimal level of media spending , 1994 .

[60]  L. Lodish,et al.  Getting the most out of advertising and promotion. , 1990, Harvard business review.

[61]  Roland T. Rust,et al.  Advertising Media Models: A Practical Guide , 1986 .

[62]  Alex Pentland,et al.  Trade-Offs in Social and Behavioral Modeling in Mobile Networks , 2013, SBP.

[63]  Israel A. Wagner,et al.  Efficient cooperative search of smart targets using UAV Swarms1 , 2008, Robotica.

[64]  Avijit Ghosh,et al.  Using household-level viewing data to maximize effective reach , 1993 .

[65]  John Saunders,et al.  Multiproduct Advertising Budgeting , 1990 .

[66]  D. Lazer,et al.  Inferring Social Network Structure using Mobile Phone Data , 2006 .

[67]  FaloutsosMichalis,et al.  On power-law relationships of the Internet topology , 1999 .

[68]  Ralph L. Hollis,et al.  Distributed coverage of rectilinear environments , 2000 .

[69]  Devavrat Shah,et al.  Rumors in a Network: Who's the Culprit? , 2009, IEEE Transactions on Information Theory.

[70]  Arun K. Ramani,et al.  Protein interaction networks from yeast to human. , 2004, Current opinion in structural biology.

[71]  Petter Holme,et al.  Congestion and Centrality in Traffic Flow on Complex Networks , 2003, Adv. Complex Syst..

[72]  Yanfeng Ouyang,et al.  Reliable sensor deployment for network traffic surveillance , 2011 .

[73]  V. Latora,et al.  Impact of network structure on a model of diffusion and competitive interaction , 2011 .

[74]  John D. C. Little,et al.  Models and Managers: The Concept of a Decision Calculus , 2016, Manag. Sci..

[75]  Dung Nguyen,et al.  An Analysis of Optimal Advertising Under Uncertainty , 1985 .

[76]  Jukka-Pekka Onnela,et al.  Spontaneous emergence of social influence in online systems , 2009, Proceedings of the National Academy of Sciences.

[77]  Damon Centola,et al.  The Spread of Behavior in an Online Social Network Experiment , 2010, Science.

[78]  M. Macy,et al.  Complex Contagions and the Weakness of Long Ties1 , 2007, American Journal of Sociology.

[79]  Benjamin Gompertz,et al.  On the Nature of the Function Expressive of the Law of Human Mortality , 1815 .

[80]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[81]  Israel A. Wagner,et al.  Shape Factor’s Effect on a Dynamic Cleaners Swarm , 2016 .

[82]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[83]  Ram C. Rao,et al.  Advertising decisions in oligopoly: An industry equilibrium analysis , 1984 .

[84]  Agostinho C. Rosa,et al.  Societal Implicit Memory and his Speed on Tracking Extrema over Dynamic Environments using Self-Regulatory Swarms , 2005, ArXiv.

[85]  Chin-Lung Hsu,et al.  Consumer behavior in online game communities: A motivational factor perspective , 2007, Comput. Hum. Behav..

[86]  Alex Pentland,et al.  Stealing Reality: When Criminals Become Data Scientists (or Vice Versa) , 2011, IEEE Intelligent Systems.

[87]  G. Monahan Optimal Advertising with Stochastic Demand , 1983 .

[88]  S. Strogatz Exploring complex networks , 2001, Nature.

[89]  Jon Orwant,et al.  Heterogeneous learning in the Doppelgänger user modeling system , 2005, User Modeling and User-Adapted Interaction.

[90]  John Philip Jones How Much Is Enough?: Getting the Most from Your Advertising Dollar , 1992 .

[91]  Alex Pentland,et al.  Composite Social Network for Predicting Mobile Apps Installation , 2011, AAAI.

[92]  J. Shawe-Taylor Potential-Based Algorithms in On-Line Prediction and Game Theory ∗ , 2001 .

[93]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[94]  Richard E. Korf,et al.  Performance of Linear-Space Search Algorithms , 1995, Artif. Intell..

[95]  Chin-Lung Hsu,et al.  Why do people play on-line games? An extended TAM with social influences and flow experience , 2004, Inf. Manag..

[96]  D. Watts,et al.  Viral marketing for the real world , 2007 .

[97]  M. L. Vidale,et al.  An Operations-Research Study of Sales Response to Advertising , 1957 .

[98]  Alex Pentland,et al.  Time-Critical Social Mobilization , 2010, Science.

[99]  Howie Choset,et al.  Path Planning for Robotic Demining and Development of a Test Platform , 2001 .

[100]  Israel A. Wagner,et al.  Swarm Intelligence - Searchers, Cleaners and Hunters , 2006, Swarm Intelligent Systems.

[101]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[102]  Alex Pentland,et al.  Incremental Learning with Accuracy Prediction of Social and Individual Properties from Mobile-Phone Data , 2011, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[103]  Richard D. Edie,et al.  On the optimal control of the Vidale-Wolfe advertising model , 1997 .

[104]  Hawoong Jeong,et al.  Modeling the Internet's large-scale topology , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[106]  P. Rouvinen,et al.  Diffusion of Digital Mobile Telephony : Are Developing Countries Different? , 2006 .

[107]  M. Barthelemy Betweenness centrality in large complex networks , 2003, cond-mat/0309436.

[108]  Rizal Setya Perdana What is Twitter , 2013 .

[109]  Ambar G. Rao,et al.  Modeling Response to Advertising and Pricing Changes for “V-8” Cocktail Vegetable Juice , 1986 .