Tensile Mechanical Properties of Isolated Collagen Fibrils Obtained by Microelectromechanical Systems Technology

[1]  Gary D Fullerton,et al.  An NMR method to characterize multiple water compartments on mammalian collagen , 2006, Cell biology international.

[2]  Alberto Redaelli,et al.  Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains , 2008, Protein science : a publication of the Protein Society.

[3]  P. Grigg,et al.  Determining the effect of hydration upon the properties of ligaments using pseudo Gaussian stress stimuli. , 2005, Journal of biomechanics.

[4]  V. Parsegian,et al.  Direct measurement of forces between self-assembled proteins: temperature-dependent exponential forces between collagen triple helices. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Buehler Molecular architecture of collagen fibrils: A critical length scale for tough fibrils , 2008 .

[6]  Jan Feijen,et al.  Mechanical properties of native and cross-linked type I collagen fibrils. , 2008, Biophysical journal.

[7]  Thomas J. Koob,et al.  Molecular structure and functional morphology of echinoderm collagen fibrils , 1994, Cell and Tissue Research.

[8]  H. Kahn,et al.  Mechanical deformation and failure of electrospun polyacrylonitrile nanofibers as a function of strain rate , 2007 .

[9]  K A Derwin,et al.  A quantitative investigation of structure-function relationships in a tendon fascicle model. , 1999, Journal of biomechanical engineering.

[10]  Jan Feijen,et al.  Micromechanical testing of individual collagen fibrils. , 2006, Macromolecular bioscience.

[11]  K. Hayashi,et al.  Mechanical properties of collagen fascicles from the rabbit patellar tendon. , 1999, Journal of biomechanical engineering.

[12]  H. Kahn,et al.  Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils , 2006, Journal of The Royal Society Interface.

[13]  Markus J. Buehler,et al.  Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly , 2006 .

[14]  C. Frank,et al.  Altering ligament water content affects ligament pre‐stress and creep behavior , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[15]  J. White,et al.  Phonons and the elastic moduli of collagen and muscle , 1977, Nature.

[16]  J. A. Chapman,et al.  Collagen fibril formation. , 1996, The Biochemical journal.

[17]  Vinod Subramaniam,et al.  Micromechanical bending of single collagen fibrils using atomic force microscopy. , 2007, Journal of biomedical materials research. Part A.

[18]  J. Graham,et al.  Structural changes in human type I collagen fibrils investigated by force spectroscopy. , 2004, Experimental cell research.

[19]  P. Fratzl,et al.  Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  Markus J Buehler,et al.  Entropic elasticity controls nanomechanics of single tropocollagen molecules. , 2007, Biophysical journal.

[21]  Trotter,et al.  Morphology and biomechanics of the microfibrillar network of sea cucumber dermis , 1996, The Journal of experimental biology.

[22]  Sheena E Radford,et al.  Tuning the elastic modulus of hydrated collagen fibrils. , 2009, Biophysical journal.

[23]  Yuye Tang,et al.  Deformation micromechanisms of collagen fibrils under uniaxial tension , 2009, Journal of The Royal Society Interface.

[24]  P. Fratzl,et al.  A new molecular model for collagen elasticity based on synchrotron X-ray scattering evidence. , 1997, Biophysical journal.

[25]  G N Ramachandran,et al.  Interchain hydrogen bonds via bound water molecules in the collagen triple helix , 1968, Biopolymers.

[26]  J. Trotter,et al.  Covalent composition of collagen fibrils from the dermis of the sea cucumber, Cucumaria frondosa, a tissue with mutable mechanical properties , 1995 .

[27]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[28]  C. Frank,et al.  Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament. , 1992, Journal of biomechanics.

[29]  J. Trotter,et al.  Partial biochemical and immunologic characterization of fibrillin microfibrils from sea cucumber dermis. , 1997, Connective tissue research.

[30]  W. G. Matthews,et al.  Low strain nanomechanics of collagen fibrils. , 2007, Biomacromolecules.

[31]  H. Kahn,et al.  Novel method for mechanical characterization of polymeric nanofibers. , 2007, The Review of scientific instruments.

[32]  N. Sasaki,et al.  Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. , 1996, Journal of biomechanics.

[33]  D. Bader,et al.  An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties , 2004, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[34]  T L Haut,et al.  The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. , 1997, Journal of biomechanics.

[35]  Laurent Bozec,et al.  Mechanical properties of collagen fibrils. , 2007, Biophysical journal.

[36]  Gary D Fullerton,et al.  Evidence that collagen and tendon have monolayer water coverage in the native state , 2006, Cell biology international.

[37]  J. Hardin,et al.  The role of lysyl oxidase and collagen crosslinking during sea urchin development. , 1987, Experimental cell research.

[38]  Alberto Redaelli,et al.  Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. , 2009, Biophysical journal.

[39]  Markus J. Buehler,et al.  Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization , 2007 .

[40]  Alberto Redaelli,et al.  Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. , 2009, Journal of the mechanical behavior of biomedical materials.

[41]  W. G. Matthews,et al.  Determination of the elastic modulus of native collagen fibrils via radial indentation , 2006 .

[42]  O. Smirnova,et al.  DSC study of melting and glass transition in gelatins , 1992 .

[43]  Sheena E. Radford,et al.  Effects of hydration on the mechanical response of individual collagen fibrils , 2008 .

[44]  H M Berman,et al.  Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. , 1994, Science.

[45]  Markus J. Buehler,et al.  Nature designs tough collagen: Explaining the nanostructure of collagen fibrils , 2006, Proceedings of the National Academy of Sciences.

[46]  Contribution of Collagen, Mineral and Water Phases to the Nanomechanical Properties of Bone , 2004 .

[47]  V A Parsegian,et al.  Raman spectral evidence for hydration forces between collagen triple helices. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. Buehler Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. , 2008, Journal of the mechanical behavior of biomedical materials.

[49]  Kozaburo Hayashi,et al.  Tensile Tests of Collagen Fibers Obtained from the Rabbit Patellar Tendon , 1999 .