Kalman-filter-based control for adaptive optics

While the first MultiConjugate Adaptive Optics (MCAO) experimental set-ups are presently under construction, a growing attention is paid to the control loop. This is indeed a key element in the optimization process, especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications: simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering, which seems a very promising solution. We have already proposed and simulated in simple cases a formalized adaptation of Kalman filtering to Adaptive Optics (AO) and MCAO. We wish now to characterize for the first time the frequential properties of this Kalman filter and to refine it so as to improve its robustness and performance, for instance in the presence of static aberrations and vibrations. Comparisons with classical controllers are proposed. Aliasing reduction could also be considered. In the near future, Kalman filter performance and robustness should be tested for realistic AO and MCAO configurations on a simulator and an experimental set-up.

[1]  Caroline Dessenne Commande modale et predictive en optique adaptative , 1998 .

[2]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[3]  Brent L. Ellerbroek,et al.  A Computationally Efficient Wavefront Reconstructor for Simulations of Multi-Conjugate Adaptive Optics on Giant Telescopes Gemini Preprint # 88 , 2002 .

[4]  Luc Gilles,et al.  Computationally efficient wavefront reconstructor for simulation of multiconjugate adaptive optics on giant telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[5]  Luc Gilles,et al.  Layer-oriented multigrid wavefront reconstruction algorithms for multiconjugate adaptive optics , 2003, SPIE Astronomical Telescopes + Instrumentation.

[6]  M. Langlois,et al.  Multiconjugate adaptive optics: laboratory experience. , 2004, Optics express.

[7]  Francois Rigaut,et al.  Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini South 8-m telescope , 2000, Astronomical Telescopes and Instrumentation.

[8]  Donald T. Gavel,et al.  Toward Strehl-optimizing adaptive optics controllers , 2003, SPIE Astronomical Telescopes + Instrumentation.

[9]  Brice Le Roux,et al.  Commande optimale en optique adaptative classique et multiconjuguée , 2003 .

[10]  Francois Rigaut,et al.  Laser guide star in adaptive optics : the tilt determination problem , 1992 .

[11]  L M Mugnier,et al.  Optimal wave-front reconstruction strategies for multiconjugate adaptive optics. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  C. Kulcsár,et al.  Optimal control law for classical and multiconjugate adaptive optics. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Thierry Fusco,et al.  Correction partielle et anisoplanétisme en optique adaptative : traitements a posteriori et optique adaptative multiconjuguée , 2000 .

[14]  R. Paschall,et al.  Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements. , 1993, Applied optics.

[15]  Gerard Rousset,et al.  Noise propagation for multiconjugate adaptive optics system , 2002, SPIE Remote Sensing.

[16]  Roberto Ragazzoni,et al.  MAD the ESO multi-conjugate adaptive optics demonstrator , 2003, SPIE Astronomical Telescopes + Instrumentation.

[17]  Eric Gendron,et al.  Astronomical adaptive optics. I. Modal control optimization. , 1994 .