Iterative method for numerical solution of two-dimensional nonlinear fuzzy integral equations

In this paper, we prove the convergence of the method of successive approximations used to approximate the solution of two-dimensional nonlinear fuzzy Fredholm integral equations of the second kind. Also, we present an iterative procedure based on quadrature formula to solve such equations. The error estimation of the proposed method is given in terms of uniform and partial modulus of continuity. Finally, some numerical experiments confirm the theoretical results and illustrate the accuracy of the method.

[1]  Krishnan Balachandran,et al.  Existence of solutions of general nonlinear fuzzy Volterra-Fredholm integral equations , 2005 .

[2]  Jong Yeoul Park,et al.  A note on fuzzy integral equations , 1999, Fuzzy Sets Syst..

[3]  Alexandru Mihai Bica,et al.  Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm integral equations , 2008, Inf. Sci..

[4]  A. Shidfar,et al.  An analytical method for solving linear Fredholm fuzzy integral equations of the second kind , 2011, Comput. Math. Appl..

[5]  J. Nieto,et al.  Bounded solutions for fuzzy differential and integral equations , 2006 .

[6]  Mohammad Ali Fariborzi Araghi,et al.  Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle , 2011, Soft Comput..

[7]  Barnabás Bede,et al.  Quadrature rules for integrals of fuzzy-number-valued functions , 2004, Fuzzy Sets Syst..

[8]  Taher Lotfi,et al.  Fuzzy Galerkin method for solving Fredholm integral equations with error analysis , 2011 .

[9]  John N. Mordeson,et al.  Fuzzy Integral Equations , 1995, Inf. Sci..

[10]  Mohammad Ali Fariborzi Araghi,et al.  The numerical solution of linear fuzzy Fredholm integral equations of the second kind by using finite and divided differences methods , 2010, Soft Comput..

[11]  S. Seikkala On the fuzzy initial value problem , 1987 .

[12]  Jong Yeoul Park,et al.  The approximate solutions of fuzzy functional integral equations , 2000, Fuzzy Sets Syst..

[13]  Esmail Babolian,et al.  Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method , 2005, Appl. Math. Comput..

[14]  M Barkhordari Ahmadi,et al.  Fuzzy bivariate Chebyshev method for solving fuzzy Volterra-Fredholm integral equations , 2011 .

[15]  Sorin G. Gal Approximation Theory in Fuzzy Setting , 2000 .

[16]  Jong Yeoul Park,et al.  On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations , 2000, Fuzzy Sets Syst..

[17]  Shokrollah Ziari,et al.  Numerical solution of nonlinear fuzzy Fredholm integral equations using iterative method , 2013, Appl. Math. Comput..

[18]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[19]  Jong Yeoul Park,et al.  Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations , 1999, Fuzzy Sets Syst..

[20]  Omid Solaymani Fard,et al.  Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind , 2010 .

[21]  Hsien-Chung Wu,et al.  The fuzzy Riemann integral and its numerical integration , 2000, Fuzzy Sets Syst..

[22]  Maryam Mosleh,et al.  Numerical Solution of Fuzzy Integral Equations Using Bernstein Polynomials , 2011 .

[23]  George A. Anastassiou,et al.  Fuzzy Mathematics: Approximation Theory , 2010, Studies in Fuzziness and Soft Computing.

[24]  A. Yazdani,et al.  A computational method for fuzzy Volterra-Fredholm integral equations , 2011 .

[25]  Tofigh Allahviranloo,et al.  Application of Gaussian Quadratures in Solving Fuzzy Fredholm Integral Equations , 2010, IPMU.

[26]  George A. Anastassiou A FUZZY TRIGONOMETRIC APPROXIMATION THEOREM OF WEIERSTRASS-TYPE , 2010 .

[27]  Alexandru Mihai Bica,et al.  Numerical solutions of the nonlinear fuzzy Hammerstein-Volterra delay integral equations , 2013, Inf. Sci..

[28]  Abraham Kandel,et al.  Solutions to fuzzy integral equations with arbitrary kernels , 1999, Int. J. Approx. Reason..

[29]  Esmail Babolian,et al.  Numerical method for solving linear Fredholm fuzzy integral equations of the second kind , 2007 .

[30]  G. Anastassiou Handbook of Analytic Computational Methods in Applied Mathematics , 2000 .

[31]  Osmo Kaleva Fuzzy differential equations , 1987 .

[32]  Congxin Wu,et al.  On Henstock integral of fuzzy-number-valued functions (I) , 2001, Fuzzy Sets Syst..

[33]  Alexandru Mihai Bica Algebraic structures for fuzzy numbers from categorial point of view , 2007, Soft Comput..

[34]  Reza Ezzati,et al.  Quadrature Rules and Iterative Method for Numerical Solution of Two-Dimensional Fuzzy Integral Equations , 2014 .

[35]  Saeid Abbasbandy,et al.  Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind Using Fuzzy Haar Wavelet , 2012, IPMU.

[36]  Shokrollah Ziari,et al.  Numerical Solution And Error Estimation Of Fuzzy Fredholm Integral Equation Using Fuzzy Bernstein Polynomials , 2011 .

[37]  Sudarsan Nanda,et al.  On integration of fuzzy mappings , 1989 .

[38]  Abraham Kandel,et al.  Numerical solutions of fuzzy differential and integral equations , 1999, Fuzzy Sets Syst..

[39]  H. Sadeghi Goghary,et al.  Two computational methods for solving linear Fredholm fuzzy integral equation of the second kind , 2006, Appl. Math. Comput..

[40]  Bobby Schmidt,et al.  Fuzzy math , 2001 .

[41]  Alexandru Mihai Bica,et al.  Approximating the solution of nonlinear Hammerstein fuzzy integral equations , 2014, Fuzzy Sets Syst..

[42]  M Khezerloo,et al.  Numerical Solution of Linear Fredholm Fuzzy Integral Equations by Modified Homotopy Perturbation Method , 2010 .

[43]  Tofigh Allahviranloo,et al.  The Adomian Decomposition Method Applied to the Fuzzy System of Fredholm Integral Equations of the Second Kind , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..