Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.

Optical trapping using focused laser beams has emerged as a powerful tool in the biological and physical sciences. However, scaling this technique to nanosized objects remains challenging due to the diffraction limit of light and the high power levels required for nanoscale trapping. In this paper, we propose plasmonic coaxial apertures as low-power optical traps for nanosized specimens. The illumination of a coaxial aperture with a linearly polarized plane wave generates a dual optical trapping potential well. We theoretically show that this potential can stably trap dielectric particles smaller than 10 nm in diameter while keeping the trapping power level below 20 mW. By tapering the thickness of the coaxial dielectric channel, trapping can be extended to sub-2-nm particles. The proposed structures may enable optical trapping and manipulation of dielectric particles ranging from single proteins to small molecules with sizes previously inaccessible.

[1]  W. Greenleaf,et al.  High-resolution, single-molecule measurements of biomolecular motion. , 2007, Annual review of biophysics and biomolecular structure.

[2]  David N. Jamieson,et al.  Extraordinary optical transmission with coaxial apertures , 2007 .

[3]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[4]  Jonathan P. Reid,et al.  Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap. , 2008, Chemical Society reviews.

[5]  T. Mcmeekin,et al.  Refractive Indices of Amino Acids, Proteins, and Related Substances , 1964 .

[6]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[7]  Yael Roichman,et al.  Manipulation and assembly of nanowires with holographic optical traps. , 2005, Optics express.

[8]  Kin Hung Fung,et al.  Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. , 2012, Nano letters.

[9]  H. Atwater,et al.  Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. , 2009, Nano letters.

[10]  R Blackwell Topics in Applied Physics: Display Devices , 1981 .

[11]  Carlos Bustamante,et al.  Differential detection of dual traps improves the spatial resolution of optical tweezers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[13]  A. Ashkin,et al.  Internal cell manipulation using infrared laser traps. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[14]  C. Fallnich,et al.  Towards an integrated optical single aerosol particle lab. , 2012, Lab on a chip.

[15]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[16]  Xiang Zhang,et al.  Optical forces in hybrid plasmonic waveguides. , 2011, Nano letters.

[17]  Yi Li,et al.  Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. , 2012, Nano letters.

[18]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[19]  M D Summers,et al.  Trapping solid aerosols with optical tweezers: a comparison between gas and liquid phase optical traps. , 2008, Optics express.

[20]  Wang,et al.  Pseudopotential calculations of nanoscale CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[21]  K. Schütze,et al.  Force generation of organelle transport measured in vivo by an infrared laser trap , 1990, Nature.

[22]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[23]  Chu,et al.  Experimental observation of optically trapped atoms. , 1986, Physical review letters.

[24]  L. Novotný Forces in Optical Near-Fields , 2001 .

[25]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[26]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[27]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[28]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[29]  Yong-Hee Lee,et al.  Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. , 2011, Nature communications.

[30]  F. Baida,et al.  Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes , 2006 .

[31]  Tomáš Čižmár,et al.  Multiple optical trapping and binding: new routes to self-assembly , 2010 .

[32]  Fadi Issam Baida,et al.  Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays , 2003 .

[33]  J. A. Stekol Amino acids and serum proteins , 1964 .

[34]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[35]  D. Erickson,et al.  Forces and transport velocities for a particle in a slot waveguide. , 2009, Nano letters.

[36]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[37]  Fadi Issam Baida,et al.  90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays. , 2007, Optics letters.

[38]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[39]  Jennifer A. Dionne,et al.  Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices , 2012 .

[40]  P W Smith,et al.  Four-wave mixing in an artificial Kerr medium. , 1981, Optics letters.

[41]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[42]  S. Fan,et al.  Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry , 2009 .

[43]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[44]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[45]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[46]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[47]  H. Atwater,et al.  A single-layer wide-angle negative-index metamaterial at visible frequencies. , 2010, Nature materials.