New materials for adsorption heat transformation and storage

Great current progress in the materials science offers an enormous choice of novel adsorbents which may be promising for transformation and storage of low temperature heat, e.g. from renewable heat sources. This paper gives an overview of recent trends and achievements in this field. We consider possible optimization of zeolites by dealumination, further development on aluminophosphates, composites “salt in porous host matrice” and metal-organic frameworks which are currently receiving the largest share of scientific attention. The particular attention is focused on the chemical nano-tailoring and tunable adsorption behavior of these materials to satisfy the demands of appropriate heat transformation cycles. We hope that this review will give new impact on target-oriented research on the novel adsorbents for heat transformation and storage.

[1]  Melkon Tatlier,et al.  Adsorption kinetics of zeolite coatings directly crystallized on metal supports for heat pump applications (adsorption kinetics of zeolite coatings) , 2010 .

[2]  Stefan Kaskel,et al.  Characterization of metal-organic frameworks by water adsorption , 2009 .

[3]  A. Freni,et al.  An advanced solid sorption chiller using SWS-1L , 2007 .

[4]  Yuri I. Aristov,et al.  Current progress in adsorption technologies for low-energy buildings , 2015 .

[5]  Stefan K. Henninger,et al.  Water Adsorption Characteristics of MIL‐101 for Heat‐Transformation Applications of MOFs , 2011 .

[6]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[7]  J. Jänchen,et al.  Preparation, hydrothermal stability and thermal adsorption storage properties of binderless zeolite beads , 2012 .

[8]  J. J. Guilleminot,et al.  Heat transfer intensification in fixed bed adsorbers , 1993 .

[9]  H. Beyer Dealumination Techniques for Zeolites , 2002 .

[10]  Yuri I. Aristov Concept of adsorbent optimal for adsorptive cooling/heating , 2014 .

[11]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[12]  J. Fransaer,et al.  On the electrochemical deposition of metal–organic frameworks , 2016 .

[13]  C. Wöll,et al.  Epitaxially grown metal-organic frameworks , 2012 .

[14]  Yuri I. Aristov,et al.  Composite sorbents “Li/Ca halogenides inside Multi-wall Carbon Nano-tubes” for Thermal Energy Storage , 2016 .

[15]  J. Kornatowski Adsorption isotherms of water as a tool for characterization of metal substituted aluminophosphate molecular sieves , 2005 .

[16]  S. Bennici,et al.  Enhancing the heat storage density of silica–alumina by addition of hygroscopic salts (CaCl2, Ba(OH)2, and LiNO3) , 2015 .

[17]  J. Fransaer,et al.  High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies , 2013 .

[18]  Yanping Yuan,et al.  Inorganic composite sorbents for water vapor sorption: A research progress , 2016 .

[19]  R. Jasra,et al.  Sorption of water in aluminophosphate molecular sieve AlPO4-5 , 1998 .

[20]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[21]  R. Halladj,et al.  Different techniques and their effective parameters in nano SAPO-34 synthesis: A review , 2016 .

[22]  Jochen Jänchen,et al.  Steamed zeolites for heat pump applications and solar driven thermal adsorption storage , 2014 .

[23]  C. Janiak,et al.  MOFs for Use in Adsorption Heat Pump Processes , 2012 .

[24]  Ulrich Müller,et al.  Industrial Outlook on Zeolites and Metal Organic Frameworks , 2012 .

[25]  R. Radermacher,et al.  Heat Conversion Systems , 1993 .

[26]  Hua Shi Organic template-free synthesis of SAPO-34 molecular sieve membranes for CO2–CH4 separation , 2015 .

[27]  C. Janiak,et al.  Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H. , 2014, Dalton transactions.

[28]  D. Stosic,et al.  Zeolite–MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption , 2014 .

[29]  D. Vos,et al.  Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure–property relationships , 2016 .

[30]  Saffa Riffat,et al.  The latest advancements on thermochemical heat storage systems , 2015 .

[31]  Alessio Sapienza,et al.  SAPO-34 coated adsorbent heat exchanger for adsorption chillers , 2015 .

[32]  L. Bonaccorsi,et al.  Adsorbent coatings for heat pumping applications: Verification of hydrothermal and mechanical stabilities , 2013 .

[33]  M. Ürgen,et al.  Preparation of zeolite coatings by direct heating of the substrates , 1999 .

[34]  Francis Meunier,et al.  Adsorption heat powered heat pumps , 2013 .

[35]  Toru Wakihara,et al.  Ultrafast and Continuous Flow Synthesis of Silicoaluminophosphates , 2016 .

[36]  N. N. Feoktistova,et al.  Adsorption of Methanol, Ammonia and Water on the Zeolite-Like Aluminophosphates AlPO4-5, AlPO4-17, and AlPO4-18 , 1996 .

[37]  E. Proverbio,et al.  Organosilanes functionalization of alumino-silica zeolites for water adsorption applications , 2016 .

[38]  K. Ng,et al.  Performance of adsorbent-embedded heat exchangers using binder-coating method , 2016 .

[39]  S. Mintova,et al.  Nanoporous materials with enhanced hydrophilicity and high water sorption capacity , 2008 .

[40]  C. Janiak,et al.  Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF , 2014 .

[41]  K. Lillerud,et al.  Verified syntheses of zeolitic materials , 2001 .

[42]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[43]  Donald W. Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[44]  R. Z. Wang,et al.  Study of the new composite adsorbent of salt LiCl/silica gel–methanol used in an innovative adsorption cooling machine driven by low temperature heat source , 2014 .

[45]  Ruzhu Wang,et al.  Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage , 2015 .

[46]  Yuri I. Aristov,et al.  Composites ‘salt inside porous matrix’ for adsorption heat transformation: a current state-of-the-art and new trends , 2012 .

[47]  E. Proverbio,et al.  Corrosion protection of aluminum 6061 in NaCl solution by silane–zeolite composite coatings , 2012, Journal of Coatings Technology and Research.

[48]  H. Henning,et al.  Temperature and Mechanical Stabilities and Changes in Porosity of Silicone Binder Based Zeolite Coatings , 2016 .

[49]  H. Kiliani Ueber ein neues Saccharin aus Milchzucker , 1883 .

[50]  Walter Mittelbach,et al.  Zeolite/aluminum composite adsorbents for application in adsorption refrigeration , 2009 .

[51]  Herman van Bekkum,et al.  Introduction to zeolite science and practice , 2001 .

[52]  S. Henninger,et al.  Versatile siloxane based adsorbent coatings for fast water adsorption processes in thermally driven chillers and heat pumps , 2015 .

[53]  Ibrahim I. El-Sharkawy,et al.  Ethanol adsorption onto metal organic framework: Theory and experiments , 2015 .

[54]  D. Ackermann,et al.  Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat , 2004 .

[55]  M. Tatlier,et al.  Preparation of zeolite a coatings on copper plates by using the substrate heating method , 2010 .

[56]  M. Burghammer,et al.  Synthesis, Single-Crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100 , 2009 .

[57]  Hiroyuki Kakiuchi,et al.  The Evaluation of Direct Cooling and Heating Desiccant Device Coated with FAM , 2007 .

[58]  C. Serre,et al.  Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. , 2007, Chemical communications.

[59]  H. Henning,et al.  Water adsorption characteristics of novel materials for heat transformation applications , 2010 .

[60]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[61]  R. Halladj,et al.  AN OVERVIEW OF THE EFFECTS OF CRYSTALLIZATION TIME, TEMPLATE AND SILICON SOURCES ON HYDROTHERMAL SYNTHESIS OF SAPO-34 MOLECULAR SIEVE WITH SMALL CRYSTALS , 2012 .

[62]  Ruzhu Wang,et al.  Progress in the development of solid–gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy , 2014 .

[63]  Yuri I. Aristov,et al.  New composite sorbents of water and methanol “salt in anodic alumina”: Evaluation for adsorption heat transformation , 2016 .

[64]  B. Chmelka,et al.  Functionalization of mesostructured inorganic–organic and porous inorganic materials , 2009 .

[65]  A. Freni,et al.  Composite Sorbent of Methanol “Lithium Chloride in Mesoporous Silica Gel” for Adsorption Cooling Machines: Performance and Stability Evaluation , 2009 .

[66]  F. Kapteijn,et al.  Crystals for sustainability – structuring Al-based MOFs for the allocation of heat and cold , 2015 .

[67]  Ruzhu Wang,et al.  Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems , 2015 .

[68]  Saffa Riffat,et al.  Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage—Hygrothermal cyclic behaviour and energetic analysis by physical experimentation , 2015 .

[69]  C. Janiak,et al.  High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). , 2015, Dalton transactions.

[70]  Yuri I. Aristov,et al.  Composite materials based on zeolite 4A for adsorption heat pumps , 1997 .

[71]  Simona Bennici,et al.  Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials , 2013 .

[72]  T. Verbiest,et al.  Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs , 2013 .

[73]  L. Bonaccorsi,et al.  Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps , 2015 .

[74]  Y. Hamamoto,et al.  Water vapor adsorption equilibrium and adsorption/desorption rate of porous alumina film adsorbent synthesized with anodization on heat transfer plate , 2014 .

[75]  Michael J Tierney,et al.  Development of coated, annular fins for adsorption chillers , 2009 .

[76]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[77]  E. Proverbio,et al.  In situ Growth of Zeolites on Metal Foamed Supports for Adsorption Heat Pumps , 2007 .

[78]  R. Gläser,et al.  Thermally driven refrigeration by methanol adsorption on coatings of HKUST-1 and MIL-101(Cr) , 2017 .

[79]  C. Janiak,et al.  MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application , 2012 .

[80]  Saad Mahmoud,et al.  Investigation of Ethanol/metal organic frameworks for low temperature adsorption cooling applications , 2013 .

[81]  T. Zeng,et al.  Manufacture of dense CAU-10-H coatings for application in adsorption driven heat pumps: optimization and characterization , 2015 .

[82]  Saffa Riffat,et al.  Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage—Selection, synthesis and characterisation of candidate materials , 2014 .

[83]  C. Janiak,et al.  Water and methanol adsorption on MOFs for cycling heat transformation processes , 2014 .

[84]  Giovanni Restuccia,et al.  A zeolite-coated bed for air conditioning adsorption systems: parametric study of heat and mass transfer by dynamic simulation , 2002 .

[85]  E. Proverbio,et al.  Zeolites direct synthesis on heat exchangers for adsorption heat pumps , 2013 .

[86]  Ahmed Hamza H. Ali,et al.  An overview on adsorption pairs for cooling , 2013 .

[87]  Ruzhu Wang,et al.  Recent progress on desiccant materials for solid desiccant cooling systems , 2014 .

[88]  C. Janiak,et al.  High performance metal-organic-framework coatings obtained via thermal gradient synthesis. , 2012, Chemical communications.

[89]  Kyoung Ho Cho,et al.  The structure of the aluminum fumarate metal-organic framework A520. , 2015, Angewandte Chemie.