An Intercomparison of Microphysical Retrieval Algorithms for Upper-Tropospheric Ice Clouds

The large horizontal extent, with its location in the cold upper troposphere, and ice composition make cirrus clouds important modulators of the Earth's radiation budget and climate. Cirrus cloud microphysical properties are difficult to measure and model because they are inhomogeneous in nature and their ice crystal size distribution and habit are not well characterized. Accurate retrievals of cloud properties are crucial for improving the representation of cloud-scale processes in largescale models and for accurately predicting the Earth's future climate. A number of passive and active remote sensing retrieval algorithms exist for estimating the microphysical properties of upper-tropospheric clouds. We believe significant progress has been made in the evolution of these retrieval algorithms in the last decade; however, there is room for improvement. Members of the Atmospheric Radiation Measurement (ARM) program Cloud Properties Working Group are involved in an intercomparison of optical depth τ and ice ...

[1]  Gail P. Anderson,et al.  Shortwave radiative closure studies for clear skies during the Atmospheric Radiation Measurement 2003 Aerosol Intensive Observation Period , 2006 .

[2]  D. Mitchell PASSIVE THERMAL RETRIEVALS OF ICE AND LIQUID WATER PATH, EFFECTIVE SIZE AND OPTICAL DEPTH and their dependence on particle and size distribution shape , 2006 .

[3]  G. Stephens,et al.  Cirrus cloud optical, microphysical, and radiative properties observed during the CRYSTAL-FACE experiment: A lidar-radar retrieval system , 2005 .

[4]  George A. Isaac,et al.  Shattering during Sampling by OAPs and HVPS. Part I: Snow Particles , 2005 .

[5]  David D. Turner,et al.  Arctic Mixed-Phase Cloud Properties from AERI Lidar Observations: Algorithm and Results from SHEBA , 2005 .

[6]  Shepard A. Clough,et al.  The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance , 2004 .

[7]  J. Barnard,et al.  A Simple Empirical Equation to Calculate Cloud Optical Thickness Using Shortwave Broadband Measurements , 2004 .

[8]  L. Pfister,et al.  Transport and freeze‐drying in the tropical tropopause layer , 2004 .

[9]  Patrick Minnis,et al.  Real-time cloud, radiation, and aircraft icing parameters from GOES over the USA , 2004 .

[10]  M. Shupe,et al.  Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements , 2003 .

[11]  Shepard A. Clough,et al.  Downward longwave irradiance uncertainty under arctic atmospheres: Measurements and modeling , 2003 .

[12]  John M. Haynes,et al.  Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approach , 2003 .

[13]  Steven A. Ackerman,et al.  Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA , 2003 .

[14]  R. Marchand,et al.  Quantifying the magnitude of anomalous solar absorption , 2003 .

[15]  J. Curry,et al.  Confronting Models with Data: The Gewex Cloud Systems Study , 2003 .

[16]  Gerald M. Stokes,et al.  The Atmospheric Radiation Measurement Program , 2003 .

[17]  Gerald G. Mace,et al.  On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum , 2002 .

[18]  J. Comstock,et al.  Ground‐based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts , 2002 .

[19]  Sally A. McFarlane,et al.  A Bayesian algorithm for the retrieval of liquid water cloud properties from microwave radiometer and millimeter radar data , 2002 .

[20]  Arnaud Delaval,et al.  Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio. , 2002, Applied optics.

[21]  S. Matrosov,et al.  Profiling cloud ice mass and particle characteristic size from Doppler radar measurements , 2002 .

[22]  G. Stephens,et al.  Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical Model , 2002 .

[23]  Kenneth Sassen,et al.  Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ Data , 2002 .

[24]  J. Iaquinta,et al.  A general approach for deriving the properties of cirrus and stratiform ice cloud particles , 2002 .

[25]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[26]  Graeme L. Stephens,et al.  Toward retrieving properties of the tenuous atmosphere using space‐based lidar measurements , 2001 .

[27]  Graeme L. Stephens,et al.  Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1. Algorithm formulation , 2001 .

[28]  D. P. Donovan,et al.  Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 1. Theory and examples , 2001 .

[29]  Jennifer M. Comstock,et al.  Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements , 2001 .

[30]  J. Comstock,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .

[31]  Brad Baker,et al.  An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE , 2001 .

[32]  A. Gettelman,et al.  Horizontal transport and the dehydration of the stratosphere , 2001 .

[33]  Q. Fu,et al.  The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration , 2001 .

[34]  Sergey Y. Matrosov,et al.  On the Use of Radar Depolarization Ratios for Estimating Shapes of Ice Hydrometeors in Winter Clouds , 2001 .

[35]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[36]  A. Illingworth,et al.  Toward More Accurate Retrievals of Ice Water Content from Radar Measurements of Clouds , 2000 .

[37]  J. Iaquinta,et al.  Cirrus Crystal Terminal Velocities , 2000 .

[38]  K. Liou,et al.  Parameterization of the scattering and absorption properties of individual ice crystals , 2000 .

[39]  E. Clothiaux,et al.  Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites , 2000 .

[40]  Roger Davies,et al.  Effects of Cloud Heterogeneities on Shortwave Radiation: Comparison of Cloud-Top Variability and Internal Heterogeneity , 1999 .

[41]  Sergey Y. Matrosov,et al.  Retrievals of vertical profiles of ice cloud microphysics from radar and IR measurements using tuned regressions between reflectivity and cloud parameters , 1999 .

[42]  S. Sherwood On moistening of the tropical troposphere by cirrus clouds , 1999 .

[43]  William L. Smith,et al.  A Methodology for Measuring Cirrus Cloud Visible-to-Infrared Spectral Optical Depth Ratios , 1999 .

[44]  W. Menzel,et al.  Eight Years of High Cloud Statistics Using HIRS , 1999 .

[45]  Patrick Minnis,et al.  Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties , 1998 .

[46]  Patrick Minnis,et al.  Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data , 1998 .

[47]  E. Browell,et al.  The impact of subvisible cirrus clouds near the tropical tropopause on stratospheric water vapor , 1998 .

[48]  K. Evans The Spherical Harmonics Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer , 1998 .

[49]  C. Twohy,et al.  Measurement of Condensed Water Content in Liquid and Ice Clouds Using an Airborne Counterflow Virtual Impactor , 1997 .

[50]  David P. Kratz,et al.  Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document , 1997 .

[51]  Greg Michael McFarquhar,et al.  Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment , 1996 .

[52]  Qilong Min,et al.  Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP Site , 1996 .

[53]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[54]  Yong Han,et al.  Multiwavelength Observations of a Developing Cloud System: The FIRE II 26 November 1991 Case Study , 1995 .

[55]  Sergey Y. Matrosov,et al.  Radar and Radiation Properties of Ice Clouds , 1995 .

[56]  M. Iacono,et al.  Line‐by‐line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons , 1995 .

[57]  K. Sassen,et al.  Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents , 1994 .

[58]  M. Poellot,et al.  Role of small ice crystals in radiative properties of cirrus: a case study , 1994 .

[59]  Q. Fu,et al.  Parameterization of the Radiative Properties of Cirrus Clouds , 1993 .

[60]  Taneil Uttal,et al.  A Method for Determining Cirrus Cloud Particle Sizes Using Lidar and Radar Backscatter Technique , 1993 .

[61]  Kenneth Sassen,et al.  Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research , 1992 .

[62]  Sergey Y. Matrosov,et al.  Estimation of ice cloud parameters from ground‐based infrared radiometer and radar measurements , 1992 .

[63]  J. Curry,et al.  A parameterization of ice cloud optical properties for climate models , 1992 .

[64]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[65]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[66]  Kenneth Sassen,et al.  Ice Cloud Content from Radar Reflectivity , 1987 .

[67]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[68]  Andrew J. Heymsfield,et al.  A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content , 1984 .

[69]  C. Platt,et al.  Remote Sounding of High Clouds. IV: Observed Temperature Variations in Cirrus Optical Properties , 1981 .

[70]  C. Platt,et al.  Lidar and Radiometric Observations of Cirrus Clouds , 1973 .

[71]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[72]  Y. Knyazikhin,et al.  The ‘‘RED versus NIR’’ Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements , 2004 .