A microstructural investigation of the nonlinear response of electrorheological suspensions

[1]  D. Klingenberg,et al.  THE ROLE OF SUSPENSION STRUCTURE IN THE DYNAMIC RESPONSE OF ELECTRORHEOLOGICAL SUSPENSIONS , 1994 .

[2]  G. Bossis,et al.  Many-body electrostatic interactions in electrorheological fluids. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Frank E. Filisko,et al.  Fourier transform analysis: Nonlinear dynamic response of an electrorheological material , 1993 .

[4]  Hass Computer simulations of nonequilibrium structure formation in electrorheological fluids. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Daniel J. Klingenberg,et al.  Simulation of the dynamic oscillatory response of electrorheological suspensions: Demonstration of a relaxation mechanism , 1993 .

[6]  Masao Doi,et al.  Shear resistance of electrorheological fluids under time‐varying electric fields , 1992 .

[7]  J. Melrose Brownian dynamics simulation of dipole suspensions under shear: the phase diagram , 1992 .

[8]  Yasufumi Otsubo,et al.  Electrorheological properties of silica suspensions , 1992 .

[9]  M. Shaw,et al.  Viscoelastic response of electrorheological fluids. II. Field strength and strain dependence , 1992 .

[10]  J. Brady,et al.  Dynamic simulation of an electrorheological fluid , 1992 .

[11]  P. J. Achorn,et al.  A study of the dynamic behavior of an electrorheological fluid , 1991 .

[12]  Y. Otsubo Electrorheological properties of barium titanate suspensions under oscillatory shear , 1991 .

[13]  D. Klingenberg,et al.  The small shear rate response of electrorheological suspensions. I. Simulation in the point–dipole limit , 1991 .

[14]  D. Klingenberg,et al.  The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit , 1991 .

[15]  Tom C. B. McLeish,et al.  Viscoelastic response of electrorheological fluids. I. Frequency dependence , 1991 .

[16]  Daniel J. Klingenberg,et al.  Dynamic simulation of electrorheological suspensions , 1989 .

[17]  D. Heyes,et al.  Experimental and Simulation Studies of Electro-rheology , 1989 .

[18]  J. L. Sproston,et al.  The influence of pulsed D.C. input signals on electrorheological fluids , 1985 .

[19]  Robert W. Ramirez,et al.  The Fft, Fundamentals and Concepts , 1984 .

[20]  W. M. Winslow Induced Fibration of Suspensions , 1949 .

[21]  M. Parthasarathy,et al.  A microstructural investigation of the nonlinear response of electrorheological suspensions , 1995 .

[22]  Daniel J. Klingenberg,et al.  Studies on the steady-shear behavior of electrorheological suspensions , 1990 .

[23]  M. Whittle,et al.  Computer simulation of an electrorheological fluid , 1990 .

[24]  J. W. Goodwin,et al.  Effects of electric fields on the rheology of non-aqueous concentrated suspensions , 1989 .

[25]  Z. P. Shul’man,et al.  The mechanism of the viscoelastic behaviour of electrorheological suspensions , 1989 .

[26]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .