A procedure with stepsize control for solving n one-dimensional IVPs

Finite precision computations may affect the stability of algorithms and the accuracy of computed solutions. In this paper we first obtain a relation for computing the number of common significant digits between the exact solution and a computed solution of a one-dimensional initial-value problem obtained by using a single-step or multi-step method. In fact, by using the approximate solutions obtained with stepsizes h and h /2, the number of common significant digits between approximate solution with stepsize h and exact solution is estimated. Then by using the stochastic arithmetic, the CESTAC method, and the CADNA library we propose an algorithm to control the round-off error effect on the computed solution. This method can easily apply to a system of n one-dimensional initial-value problems. Finally some numerical examples are given to show the efficiency of the method.

[1]  Fabienne Jézéquel A dynamical strategy for approximation methods , 2006 .

[2]  J. Vignes New methods for evaluating the validity of the results of mathematical computations , 1978 .

[3]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[4]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .

[5]  Christian Ullrich Contributions to computer arithmetic and self-validating numerical methods , 1990 .

[6]  Christian P. Ullrich,et al.  Computer Arithmetic and Self-Validating Numerical Methods , 1990, Notes and reports in mathematics in science and engineering.

[7]  Fabienne Jézéquel,et al.  Dynamical Control of Computations Using the Trapezoidal and Simpson's Rules , 1998, J. Univers. Comput. Sci..

[8]  J.-M. Chesneaux Modélisation et conditions de validité de la méthode CESTAC , 1988 .

[9]  Jean Vignes,et al.  A stochastic arithmetic for reliable scientific computation , 1993 .

[10]  Marilyn Bohl,et al.  Information processing , 1971 .

[11]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[12]  Jean Vignes,et al.  Discrete Stochastic Arithmetic for Validating Results of Numerical Software , 2004, Numerical Algorithms.

[13]  J. Vignes,et al.  Error Analysis in Computing , 1974, IFIP Congress.

[14]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[15]  S. Abbasbandy,et al.  The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree , 2004 .

[16]  S. Abbasbandy,et al.  A stochastic scheme for solving definite integrals , 2005 .

[17]  J. Vignes,et al.  Zéro mathématique et zéro informatique , 1986 .

[18]  J.-M. Chesneaux,et al.  Les fondements de l'arithmétique stochastique , 1992 .