Mesh optimization to improve the stability of finite-volume methods on unstructured meshes

Abstract The new approach proposed here improves the stability of unstructured mesh finite-volume CFD calculations by moving vertices in the mesh as an a posteriori process. In this process, we exploit the gradients of eigenvalues with respect to the local changes in the mesh to find directions and magnitudes of mesh perturbations that will make the Jacobian of a semi-discrete system of equations negative semi-definite. This will ensure the energy stability of the system, consequently resulting in convergence. Our numerical results have shown that the proposed method was able to locate the problematic parts of the mesh as well as reconstruction responsible for instabilities for several physical problems.

[1]  Raphael T. Haftka,et al.  Derivatives of eigenvalues and eigenvectors of a general complex matrix , 1988 .

[2]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[3]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS , 1978 .

[4]  Philip L. Roe,et al.  Third-order active-flux scheme for advection diffusion: Hyperbolic diffusion, boundary condition, and Newton solver , 2016 .

[5]  Michael I. Friswell,et al.  The Derivatives of Repeated Eigenvalues and Their Associated Eigenvectors , 1996 .

[6]  Andrea Crivellini,et al.  An implicit matrix-free Discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations , 2011 .

[7]  K. Meerbergen,et al.  Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems , 1996 .

[8]  F. Alizard,et al.  Finite difference methods for viscous incompressible global stability analysis , 2010 .

[9]  R. Fox,et al.  Rates of change of eigenvalues and eigenvectors. , 1968 .

[10]  Y. Saad,et al.  Numerical Methods for Large Eigenvalue Problems , 2011 .

[11]  L. C. Rogers Derivatives of eigenvalues and eigenvectors , 1970 .

[12]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[13]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[14]  Michael J. Aftosmis,et al.  On the Accuracy, Stability, and Monotonicity of Various Reconstruction Algorithms for Unstructured Meshes , 1994 .

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  Jean-Pierre Croisille,et al.  Stability analysis of the cell centered finite-volume Muscl method on unstructured grids , 2009, Numerische Mathematik.

[17]  H. G. ter Morsche,et al.  Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem , 2006 .

[18]  Lloyd N. Trefethen,et al.  Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues , 1990 .

[19]  C. S. Rudisill,et al.  Derivatives of Eigenvalues and Eigenvectors for a General Matrix , 1974 .

[20]  L. Trefethen,et al.  Stability of the method of lines , 1992, Spectra and Pseudospectra.

[21]  T. Barth Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .

[22]  Carl Ollivier-Gooch,et al.  Globalized matrix-explicit Newton-GMRES for the high-order accurate solution of the Euler equations , 2010 .

[23]  C. Berthon,et al.  Stability of the MUSCL Schemes for the Euler Equations , 2005 .

[24]  Peter H. Lauritzen,et al.  A stability analysis of finite-volume advection schemes permitting long time steps , 2007 .