Convergence rate of Markov chain methods for genomic motif discovery

We analyze the convergence rate of a popular Gibbs sampling method used for statistical discovery of gene regulatory binding motifs in DNA sequences. This sampler satisfies a very strong form of ergodicity (uniform). However, we show that, due to multimodality of the posterior distribution, the rate of convergence often decreases exponentially as a function of the length of the DNA sequence. Specifically, we show that this occurs whenever there is more than one true repeating pattern in the data. In practice there are typically multiple, even numerous, such patterns in biological data, the goal being to detect the most well-conserved and frequently-occurring of these. Our findings match empirical results, in which the motif-discovery Gibbs sampler has exhibited such poor convergence that it is used only for finding modes of the posterior distribution (candidate motifs) rather than for obtaining samples from that distribution. Ours appear to be the first meaningful bounds on the convergence rate of a Markov chain method for sampling from a multimodal posterior distribution, as a function of statistical quantities like the number of observations.

[1]  J. Doob Stochastic processes , 1953 .

[2]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[3]  R. Berk,et al.  Limiting Behavior of Posterior Distributions when the Model is Incorrect , 1966 .

[4]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[7]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[8]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[9]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[10]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[11]  Jun S. Liu,et al.  Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. , 1993, Science.

[12]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[13]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[14]  Jun S. Liu,et al.  Bayesian Models for Multiple Local Sequence Alignment and Gibbs Sampling Strategies , 1995 .

[15]  Jun S. Liu,et al.  Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans , 1995 .

[16]  Jun S. Liu,et al.  Gibbs motif sampling: Detection of bacterial outer membrane protein repeats , 1995, Protein science : a publication of the Protein Society.

[17]  Jeffrey S. Rosenthal,et al.  Analysis of the Gibbs Sampler for a Model Related to James-stein Estimators , 2007 .

[18]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[19]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[20]  G. Church,et al.  Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation , 1998, Nature Biotechnology.

[21]  Alan M. Frieze,et al.  Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[22]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[23]  S. Q. s3idChMn,et al.  Evolutionary Monte Carlo: Applications to C_p Model Sampling and Change Point Problem , 2000 .

[24]  Faming Liang,et al.  EVOLUTIONARY MONTE CARLO: APPLICATIONS TO Cp MODEL SAMPLING AND CHANGE POINT PROBLEM , 2000 .

[25]  Galin L. Jones,et al.  Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .

[26]  G. Roberts,et al.  Approximate Predetermined Convergence Properties of the Gibbs Sampler , 2001 .

[27]  Antonietta Mira,et al.  Ordering and Improving the Performance of Monte Carlo Markov Chains , 2001 .

[28]  Douglas L. Brutlag,et al.  BioProspector: Discovering Conserved DNA Motifs in Upstream Regulatory Regions of Co-Expressed Genes , 2000, Pacific Symposium on Biocomputing.

[29]  D. Randall,et al.  Markov chain decomposition for convergence rate analysis , 2002 .

[30]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[31]  P. Green,et al.  Hidden Markov Models and Disease Mapping , 2002 .

[32]  Neal Madras,et al.  On the swapping algorithm , 2003, Random Struct. Algorithms.

[33]  G. Fort,et al.  On the geometric ergodicity of hybrid samplers , 2003, Journal of Applied Probability.

[34]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[35]  Shane T. Jensen,et al.  Computational Discovery of Gene Regulatory Binding Motifs: A Bayesian Perspective , 2004 .

[36]  Dana Randall,et al.  Torpid mixing of simulated tempering on the Potts model , 2004, SODA '04.

[37]  Bonnie Berger,et al.  Methods in Comparative Genomics: Genome Correspondence, Gene Identification and Regulatory Motif Discovery , 2004, J. Comput. Biol..

[38]  Galin L. Jones,et al.  Sufficient burn-in for Gibbs samplers for a hierarchical random effects model , 2004, math/0406454.

[39]  Elchanan Mossel,et al.  Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny , 2005, The Annals of Applied Probability.

[40]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[41]  A. Belloni,et al.  On the Computational Complexity of MCMC-Based Estimators in Large Samples , 2007 .

[42]  Alicia A. Johnson,et al.  Gibbs sampling for a Bayesian hierarchical general linear model , 2007 .

[43]  M. West,et al.  Shotgun Stochastic Search for “Large p” Regression , 2007 .

[44]  Darren J. Wilkinson,et al.  Discussion of Particle Markov chain Monte Carlo , 2008 .

[45]  D. Woodard,et al.  Conditions for Rapid and Torpid Mixing of Parallel and Simulated Tempering on Multimodal Distributions , 2009, 0906.2341.

[46]  Chao Yang,et al.  Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC , 2009 .

[47]  D. Woodard,et al.  Sufficient Conditions for Torpid Mixing of Parallel and Simulated Tempering , 2009 .

[48]  K. Kamatani Local consistency of Markov chain Monte Carlo methods , 2010, 1012.0996.

[49]  Weak consistency of Markov chain Monte Carlo methods , 2011, 1103.5679.

[50]  M. Li,et al.  Particle Markov chain Monte Carlo methods , 2015 .

[51]  D. Woodard,et al.  Conditions for Torpid Mixing of Parallel and Simulated Tempering on Multimodal Distributions , 2022 .