Visualizing the search process of particle swarm optimization

It is a hard problem to understand the search process of particle swarm optimization over high-dimensional domain. The visualization depicts the total search process and then it will allow better understanding of how to tune the algorithm. For the investigation, we adopt Sammon's mapping, which is a well-known distance-preserving mapping. We demonstrate the usefulness of the proposed methodology by applying it to some function optimization problems.

[1]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[2]  Trevor D. Collins,et al.  Visualization of Binary String Convergence by Sammon Mapping , 1996, Evolutionary Programming.

[3]  J. Kennedy,et al.  Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[4]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[6]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[7]  Graham Kendall,et al.  A Survey And Analysis Of Diversity Measures In Genetic Programming , 2002, GECCO.

[8]  Witold Dzwinel,et al.  How to make sammon's mapping useful for multidimensional data structures analysis , 1994, Pattern Recognit..

[9]  Trevor Collins,et al.  Genotypic-Space Mapping: Population Visualization for Genetic Algorithms , 1996 .

[10]  Yong-Hyuk Kim,et al.  New Usage of Sammon's Mapping for Genetic Visualization , 2003, GECCO.

[11]  Robert P. W. Duin,et al.  Sammon's mapping using neural networks: A comparison , 1997, Pattern Recognit. Lett..

[12]  Christine Solnon,et al.  A study of ACO capabilities for solving the maximum clique problem , 2006, J. Heuristics.

[13]  Jianzhong Zhou,et al.  A Self-Adaptive Particle Swarm Optimization Algorithm with Individual Coefficients Adjustment , 2007 .

[14]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[15]  Kenneth A. De Jong,et al.  Measurement of Population Diversity , 2001, Artificial Evolution.

[16]  Peter Ross,et al.  GAVEL - a new tool for genetic algorithm visualization , 2001, IEEE Trans. Evol. Comput..

[17]  Gary B. Lamont,et al.  Visualizing particle swarm optimization - Gaussian particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[18]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[19]  David E. Goldberg,et al.  Search space boundary extension method in real-coded genetic algorithms , 2001, Inf. Sci..

[20]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[23]  Hartmut Pohlheim,et al.  Visualization of evolutionary algorithms - set of standard techniques and multidimensional visualization , 1999 .