Discrete derived categories II: the silting pairs CW complex and the stability manifold

Discrete derived categories were studied initially by Vossieck [‘The algebras with discrete derived category’, J. Algebra 243 (2001) 168–176] and later by Bobinski, Geis and Skowronski [‘Classification of discrete derived categories’, Cent. Eur. J. Math. 2 (2004) 19–49]. In this article, we define the CW complex of silting pairs for a triangulated category and show that it is contractible in the case of discrete derived categories. We provide an explicit embedding from the silting CW complex into the stability manifold. By work of Qiu and Woolf [‘Contractible stability spaces and faithful braid group actions’, Preprint, 2014, arXiv:1407.5986], there is a deformation retract of the stability manifold onto the silting pairs CW complex. We obtain that the space of stability conditions of discrete derived categories is contractible.

[1]  H. Derksen,et al.  General Presentations of Algebras , 2009, 0911.4913.

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  Octavio Mendoza Hernández,et al.  Auslander-Buchweitz Context and Co-t-structures , 2010, Appl. Categorical Struct..

[4]  D. Vossieck The Algebras with Discrete Derived Category , 2001 .

[5]  A. King,et al.  Exchange graphs and Ext quivers , 2011, 1109.2924.

[6]  So Okada Stability manifold of ℙ , 2006 .

[7]  Dong Yang,et al.  Ordered Exchange Graphs , 2013, 1302.6045.

[8]  C. Geiss,et al.  Classification of discrete derived categories , 2004 .

[9]  Anders Björner,et al.  Posets, Regular CW Complexes and Bruhat Order , 1984, Eur. J. Comb..

[10]  Y. Qiu STABILITY CONDITIONS AND QUANTUM DILOGARITHM IDENTITIES FOR DYNKIN QUIVERS , 2011, 1111.1010.

[11]  M. Kontsevich,et al.  Dynamical systems and categories , 2013, 1307.8418.

[12]  A. King,et al.  EXCHANGE GRAPHS OF ACYCLIC CALABI-YAU CATEGORIES , 2012 .

[13]  Michelle L. Wachs,et al.  On lexicographically shellable posets , 1983 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.

[16]  I. Reiten,et al.  Tilting in Abelian Categories and Quasitilted Algebras , 1996 .

[17]  L. Katzarkov,et al.  Bridgeland stability conditions on the acyclic triangular quiver , 2014, 1410.0904.

[18]  J. Seade,et al.  Morse theory and the topology of holomorphic foliations near an isolated singularity , 2011, 1105.3752.

[19]  J. Woolf Stability conditions, torsion theories and tilting , 2009, 0909.0552.

[20]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[21]  On triangulated orbit categories , 2005, math/0503240.

[22]  M. Bondarko Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general) , 2007, 0704.4003.

[23]  O. Iyama Mutations in triangulated categories and rigid Cohen-Macaulay modules , 2006 .

[24]  D. Tamaki,et al.  Totally normal cellular stratified spaces and applications to the configuration space of graphs , 2013, 1312.7368.

[25]  D. Ploog,et al.  Discrete derived categories I: homomorphisms, autoequivalences and t-structures , 2013, 1312.5203.

[26]  T. Aihara Tilting-Connected Symmetric Algebras , 2010, 1012.3265.

[27]  W. Marsden I and J , 2012 .

[28]  Osamu Iyama,et al.  Silting mutation in triangulated categories , 2010, J. Lond. Math. Soc..

[29]  Y. Sibuya,et al.  Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type , 1989 .

[30]  Jiaqun Wei,et al.  Semi-tilting complexes , 2013 .

[31]  J. Woolf Algebraic stability conditions and contractible stability spaces , 2014 .

[32]  D. Yang,et al.  Intermediate co-t-structures, two-term silting objects, tau-tilting modules, and torsion classes , 2013, 1311.4891.

[33]  D. Yang,et al.  Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras , 2012, Documenta Mathematica.

[34]  Luise Unger Combinatorial aspects of the set of tilting modules , 2007 .

[35]  David Pauksztello Compact corigid objects in triangulated categories and co-t-structures , 2007, 0705.0102.

[36]  A. Schofield,et al.  On a simplical complex associated with tilting modules , 1991 .

[37]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[38]  Masakazu Suzuki Sur les relations d'équivalence ouvertes dans les espaces analytiques , 1974 .

[39]  Octavio Mendoza Hernández,et al.  Auslander-Buchweitz Approximation Theory for Triangulated Categories , 2010, Appl. Categorical Struct..