Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators

Opto-mechano-fluidic resonators (OMFRs) are a unique optofluidics platform that can measure the acoustic properties of fluids and bioanalytes in a fully-contained microfluidic system. By confining light in ultra-high-Q whispering gallery modes of OMFRs, optical forces such as radiation pressure and electrostriction can be used to actuate and sense structural mechanical vibrations spanning MHz to GHz frequencies. These vibrations are hybrid fluid-shell modes that entrain any bioanalyte present inside. As a result, bioanalytes can now reflect their acoustic properties on the optomechanical vibrational spectrum of the device, in addition to optical property measurements with existing optofluidics techniques. In this work, we investigate acoustic sensing capabilities of OMFRs using computational eigenfrequency analysis. We analyze the OMFR eigenfrequency sensitivity to bulk fluid-phase materials as well as nanoparticles, and propose methods to extract multiple acoustic parameters from multiple vibrational modes. The new informational degrees-of-freedom provided by such opto-acoustic measurements could lead to surprising new sensor applications in the near future.

[1]  Xudong Fan,et al.  Advanced photonic structures for biological and chemical detection , 2009 .

[2]  M. Roukes,et al.  Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators , 2010 .

[3]  A. Kurt,et al.  Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface , 2007 .

[4]  Tal Carmon,et al.  Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. , 2005, Physical review letters.

[5]  Aaron R. Hawkins,et al.  Handbook of Optofluidics , 2010 .

[6]  A. Hawkins,et al.  Highly efficient fluorescence detection in picoliter volume liquid-core waveguides , 2005 .

[7]  Luke P. Lee,et al.  Optofluidic control using photothermal nanoparticles , 2006, Nature materials.

[8]  Nathan Cermak,et al.  Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells , 2013, PloS one.

[9]  Tal Carmon,et al.  Cavity optomechanics on a microfluidic resonator with water and viscous liquids , 2012, Light: Science & Applications.

[10]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[11]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[12]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[13]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[14]  David Sinton,et al.  Nanoholes as nanochannels: flow-through plasmonic sensing. , 2009, Analytical chemistry.

[15]  T. Litovitz,et al.  Brillouin Scattering: Viscoelastic Measurements in Liquids , 1968 .

[16]  S. A. Lee,et al.  A Brillouin scattering study of the hydration of Li‐ and Na‐DNA films , 1987, Biopolymers.

[17]  A. Matsko,et al.  Low threshold optical oscillations in a whispering gallery mode CaF(2) resonator. , 2004, Physical review letters.

[18]  Dieter Braun,et al.  Optically driven fluid flow along arbitrary microscale patterns using thermoviscous expansion , 2008 .

[19]  Kerry J. Vahala,et al.  Radiation-pressure-driven micro-mechanical oscillator , 2005 .

[20]  Jonathan Ward,et al.  Single-input spherical microbubble resonator. , 2011, Optics letters.

[21]  Yunhan Luo,et al.  Versatile optofluidic ring resonator lasers based on microdroplets. , 2011, Optics express.

[22]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[23]  N. Stefanou,et al.  Observation and tuning of hypersonic bandgaps in colloidal crystals , 2006, Nature materials.

[24]  Xudong Fan,et al.  Optical ring resonators for biochemical and chemical sensing , 2011, Analytical and bioanalytical chemistry.

[25]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[26]  Jing Liu,et al.  Brillouin cavity optomechanics with microfluidic devices , 2013, Nature Communications.

[27]  P. Fauchet,et al.  Nanoscale microcavity sensor for single particle detection. , 2007, Optics letters.

[28]  Ryan C Bailey,et al.  High-Q optical sensors for chemical and biological analysis. , 2012, Analytical chemistry.

[29]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[30]  Gaurav Bahl,et al.  Opto-mechano-fluidic viscometer , 2014, 1404.3337.

[31]  T. Litovitz,et al.  Brillouin Scattering and Relaxation in Liquids , 1968 .

[32]  Nathan Cermak,et al.  Weighing nanoparticles in solution at the attogram scale , 2014, Proceedings of the National Academy of Sciences.

[33]  Tal Carmon,et al.  Stimulated optomechanical excitation of surface acoustic waves in a microdevice. , 2011, Nature communications.

[34]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[35]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[36]  R. Windeler,et al.  Optical microbubble resonator. , 2010, Optics letters.

[37]  S. Arnold,et al.  Single virus detection from the reactive shift of a whispering-gallery mode , 2008, Proceedings of the National Academy of Sciences.

[38]  Luke P. Lee,et al.  Optofluidics: Fundamentals, Devices, and Applications , 2009 .

[39]  S. Yun,et al.  Confocal Brillouin microscopy for three-dimensional mechanical imaging. , 2007, Nature photonics.

[40]  D. Deamer,et al.  Loss-based optical trap for on-chip particle analysis. , 2009, Lab on a chip.

[41]  R. Chang,et al.  Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission , 1986, Science.

[42]  Ajay Agarwal,et al.  Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. , 2009, Lab on a chip.

[43]  S. Arnold,et al.  Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing. , 2009, Optics express.

[44]  Sungmin Son,et al.  Direct observation of mammalian cell growth and size regulation , 2012, Nature Methods.

[45]  Ahmet Ali Yanik,et al.  Sub-wavelength Nanofluidics in Photonic Crystal Sensors References and Links , 2022 .

[46]  Xudong Fan,et al.  The potential of optofluidic biolasers , 2014, Nature Methods.

[47]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[48]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.