Gadolinium-DTPA-dextran: a macromolecular MR blood pool contrast agent.

[1]  D. Parker,et al.  Poly(l-glutamic acid) Gd(III)-DOTA conjugate with a degradable spacer for magnetic resonance imaging. , 2003, Bioconjugate chemistry.

[2]  G. Valero A 'new class' of polymers , 2003 .

[3]  Robert C. Brasch,et al.  Macromolecular contrast agents for MR mammography: current status , 2003, European Radiology.

[4]  J. Debatin,et al.  MR angiography with a new rapid‐clearance blood pool agent: Initial experience in rabbits , 2002, Magnetic resonance in medicine.

[5]  A. Padhani Dynamic contrast‐enhanced MRI in clinical oncology: Current status and future directions , 2002, Journal of magnetic resonance imaging : JMRI.

[6]  David R Vera,et al.  A molecular CT blood pool contrast agent. , 2002, Academic radiology.

[7]  C. Bremer,et al.  Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. , 2002, Radiology.

[8]  A. Mühler,et al.  Early distribution dynamics of polymeric magnetic resonance imaging contrast agents in rats. , 2002, Academic radiology.

[9]  K. Scheffler,et al.  B22956/1, a new intravascular contrast agent for MRI: first administration to humans--preliminary results. , 2002, Academic radiology.

[10]  T. Vogl,et al.  Gadomer-17 enhanced navigator-echo MRA: experimental study and initial results. , 2002, Academic radiology.

[11]  M. Brechbiel,et al.  Dynamic micro-MRI of liver micrometastasis with a novel liver macromolecular MR contrast agent DAB-Am64-(1B4M-Gd)64. , 2002, Academic radiology.

[12]  B. Hamm,et al.  Preclinical characterization of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as a blood pool contrast medium for MR angiography. , 2002, Academic radiology.

[13]  T. Helbich,et al.  Comparison between gadopentetate and feruglose (Clariscan)-enhanced MR-mammography: preliminary clinical experience. , 2002, Academic Radiology.

[14]  J. Debatin,et al.  MR angiography with a new rapid clearance blood pool agent (P792): initial experience in rabbits. , 2002, Academic radiology.

[15]  E. Kahn,et al.  Assessing perfusion and capillary permeability changes induced by a VEGF inhibitor in human tumor xenografts using macromolecular MR imaging contrast media. , 2002, Academic radiology.

[16]  R. Brasch,et al.  Tumor microvascular changes to anti-angiogenic treatment assessed by MR contrast media of different molecular weights. , 2002, Academic radiology.

[17]  M. Wendland,et al.  MRI of antigen-induced arthritis in rabbits: improved contrast and disease characterization with the blood pool agent MS-325. , 2002, Academic radiology.

[18]  M. Brechbiel,et al.  Rapid accumulation and internalization of radiolabeled herceptin in an inflammatory breast cancer xenograft with vasculogenic mimicry predicted by the contrast-enhanced dynamic MRI with the macromolecular contrast agent G6-(1B4M-Gd)(256). , 2002, Cancer research.

[19]  S. H. Koenig,et al.  Water-proton relaxation by a noncovalent albumin-binding gadolinium chelate: an NMRD study of a potential blood pool agent. , 2002, Academic radiology.

[20]  M. Wendland,et al.  Comparison of MR contrast-enhancing properties of albumin-(biotin)10-(gadopentetate)25, a macromolecular MR blood pool contrast agent, and its microscopic distribution. , 2002, Academic radiology.

[21]  T. Helbich,et al.  Dynamic MRI enhanced with albumin-(Gd-DTPA)30 or ultrasmall superparamagnetic iron oxide particles (NC100150 injection) for the measurement of microvessel permeability in experimental breast tumors. , 2002, Academic radiology.

[22]  M. Port,et al.  Arterial concentration profiles of two blood pool agents and Gd-DOTA after intravenous injection in rabbits. , 2002, Academic radiology.

[23]  J. Bulte,et al.  Pharmacokinetics of a high-generation dendrimer-Gd-DOTA. , 2002, Academic radiology.

[24]  Dewey Odhner,et al.  3D MRA visualization and artery-vein separation using blood-pool contrast agent MS-325. , 2002, Academic radiology.

[25]  J. Wong,et al.  Sentinel Lymph Node Identification for Patients with Breast Cancer Using Large‐Size Radiotracer Particles: Technetium‐99m–Labeled Tin Colloids Produced Excellent Results , 2001, The Breast Journal.

[26]  J. Finn,et al.  Three‐dimensional MR pulmonary perfusion imaging and angiography with an injection of a new blood pool contrast agent B‐22956/1 , 2001, Journal of magnetic resonance imaging : JMRI.

[27]  T. Helbich,et al.  MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS‐325) with correlations to histopathology , 2001, Journal of magnetic resonance imaging : JMRI.

[28]  C K Hoh,et al.  A synthetic macromolecule for sentinel node detection: (99m)Tc-DTPA-mannosyl-dextran. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[29]  R Weissleder,et al.  Size optimization of synthetic graft copolymers for in vivo angiogenesis imaging. , 2001, Bioconjugate chemistry.

[30]  R. Brasch,et al.  MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report. , 2000, European journal of radiology.

[31]  T. Helbich,et al.  A new polysaccharide macromolecular contrast agent for MR imaging: Biodistribution and imaging characteristics , 2000, Journal of magnetic resonance imaging : JMRI.

[32]  A de Roos,et al.  Blood pool contrast agents for cardiovascular MR imaging , 1999, Journal of magnetic resonance imaging : JMRI.

[33]  M. Hynes,et al.  Synthesis and preliminary evaluation of MP‐2269: A novel, nonaromatic small‐molecule blood‐pool MR contrast agent , 1998, Magnetic resonance in medicine.

[34]  T L Chenevert,et al.  Magnetic resonance angiography with gadomer-17. An animal study original investigation. , 1998, Investigative radiology.

[35]  R. Dolan,et al.  MS-325: albumin-targeted contrast agent for MR angiography. , 1998, Radiology.

[36]  M. Janier,et al.  Evaluation of Gd-DOTA-labeled dextran polymer as an intravascular MR contrast agent for myocardial perfusion. , 1998, Academic radiology.

[37]  E. Dellacherie,et al.  Polymeric conjugates of Gd(3+)-diethylenetriaminepentaacetic acid and dextran. 2. Influence of spacer arm length and conjugate molecular mass on the paramagnetic properties and some biological parameters. , 1998, Bioconjugate chemistry.

[38]  R. Dolan,et al.  MS-325: a small-molecule vascular imaging agent for magnetic resonance imaging. , 1996, Academic radiology.

[39]  S. Dumitriu Polysaccharides in Medicinal Applications , 1996 .

[40]  Shihua Zhao,et al.  Carboxymethyl-dextran-gadolinium-DTPA as a blood-pool contrast agent for magnetic resonance angiography. Experimental study in rabbits. , 1996, Investigative radiology.

[41]  N. Hylton,et al.  Evaluation of the effects of intravascular MR contrast media (gadolinium dendrimer) on 3D time of flight magnetic resonance angiography of the body , 1996, Journal of magnetic resonance imaging : JMRI.

[42]  G. Frija,et al.  Capillary leakage of a macromolecular MRI agent, carboxymethyldextran-Gd-DTPA, in the liver: pharmacokinetics and imaging implications. , 1996, Magnetic resonance imaging.

[43]  E. Uzgiris,et al.  Tumor imaging with a macromolecular paramagnetic contrast agent: gadopentetate dimeglumine-polylysine. , 1995, Academic radiology.

[44]  R. Brasch,et al.  Contrast-Enhanced Magnetic Resonance Imaging Estimation of Altered Capillary Permeability in Experimental Mammary Carcinomas After X-Irradiation , 1994, Investigative radiology.

[45]  R. Brasch,et al.  A macromolecular contrast agent for magnetic resonance imaging. Effect of molecular weight on blood pharmacokinetics and enhancement patterns for polylysine-gadopentetate dimeglumine. , 1994, Investigative radiology.

[46]  M. Schaefer,et al.  Paramagnetic dextrans as magnetic resonance blood pool tracers. , 1994, Investigative radiology.

[47]  G. Adam,et al.  Gd‐DTPA‐cascade‐polymer: Potential blood pool contrast agent for MR imaging , 1994, Journal of magnetic resonance imaging : JMRI.

[48]  R. Brasch,et al.  Effect of varying the molecular weight of the MR contrast agent Gd‐DTPA‐polylysine on blood pharmacokinetics and enhancement patterns , 1994, Journal of magnetic resonance imaging : JMRI.

[49]  P C Lauterbur,et al.  Dendrimer‐based metal chelates: A new class of magnetic resonance imaging contrast agents , 1994, Magnetic resonance in medicine.

[50]  R. Weissleder,et al.  Enhancement of MR angiography with iron oxide: preliminary studies in whole-blood phantom and in animals. , 1994, AJR. American journal of roentgenology.

[51]  D. Carney,et al.  Perfluorooctylbromide as a contrast agent for CT and sonography: preliminary clinical results. , 1993, AJR. American journal of roentgenology.

[52]  L. Seymour Passive tumor targeting of soluble macromolecules and drug conjugates. , 1992, Critical reviews in therapeutic drug carrier systems.

[53]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. , 1990, Radiology.

[54]  N. L. Krinick,et al.  Targetable photoactivatable drugs, 2. Synthesis of N‐(2‐hydroxypropyl)methacrylamide copolymeranti‐thy 1.2 antibody‐chlorin e6 conjugates and a preliminary study of their photodynamic effect on mouse splenocytes in vitro , 1990 .

[55]  R. Mattrey,et al.  Perfluorooctylbromide: a new contrast agent for CT, sonography, and MR imaging. , 1989, AJR. American journal of roentgenology.

[56]  C. Balu-Maestro,et al.  Liver, spleen, and vessels: preliminary clinical results of CT with perfluorooctylbromide. , 1989, Radiology.

[57]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[58]  G. Krejcarek,et al.  Covalent attachment of chelating groups to macromolecules. , 1977, Biochemical and biophysical research communications.