Development of a knowledge library for automated watershed modeling

In this work, we develop a library of components for building semi-distributed watershed models. The library incorporates basic modeling knowledge that allows us to adequately model different water fluxes and nutrient loadings on a watershed scale. It is written in a formalism compliant with the equation discovery tool ProBMoT, which can automatically construct watershed models from the components in the library, given a conceptual model specification and measured data. We apply the proposed modeling methodology to the Ribeira da Foupana catchment to extract a set of viable hydrological models. By specifying the conceptual model and using the knowledge library, two different hydrological models are generated. Both models are automatically calibrated against measurements and the model with the lower root mean squared error (RMSE) value is selected as an appropriate hydrological model for the selected study area.

[1]  Chihda Wu,et al.  Study on estimating the evapotranspiration cover coefficient for stream flow simulation through remote sensing techniques , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[2]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[3]  V. Singh,et al.  The EPIC model. , 1995 .

[4]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[5]  Gary D. Tasker,et al.  Techniques for estimation of storm-runoff loads, volumes, and selected constituent concentrations in urban watersheds in the United States , 1988 .

[6]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[7]  Anthony M. Castronova,et al.  Modeling water resource systems using a service-oriented computing paradigm , 2011, Environ. Model. Softw..

[8]  Saso Dzeroski,et al.  Automated discovery of a model for dinoflagellate dynamics , 2011, Environ. Model. Softw..

[9]  Thomas Maxwell,et al.  Patuxent landscape model: integrated ecological economic modeling of a wathershed , 1999, Environ. Model. Softw..

[10]  Robert M. Argent,et al.  A new approach to water quality modelling and environmental decision support systems , 2009, Environ. Model. Softw..

[11]  Laura Díaz,et al.  Service-oriented applications for environmental models: Reusable geospatial services , 2010, Environ. Model. Softw..

[12]  Alexey A. Voinov,et al.  Modular ecosystem modeling , 2004, Environ. Model. Softw..

[13]  J. B. Gregersen,et al.  OpenMI: Open modelling interface , 2007 .

[14]  Olaf David,et al.  A software engineering perspective on environmental modeling framework design: The Object Modeling System , 2013, Environ. Model. Softw..

[15]  Robert M. Argent,et al.  An overview of model integration for environmental applications--components, frameworks and semantics , 2004, Environ. Model. Softw..

[16]  W. H. Wischmeier,et al.  Predicting rainfall erosion losses : a guide to conservation planning , 1978 .

[17]  J. Arnold,et al.  SWAT2000: current capabilities and research opportunities in applied watershed modelling , 2005 .

[18]  Mary C. Hill,et al.  Integrated environmental modeling: A vision and roadmap for the future , 2013, Environ. Model. Softw..

[19]  Stefano Nativi,et al.  Environmental model access and interoperability: The GEO Model Web initiative , 2013, Environ. Model. Softw..

[20]  George H. Hargreaves,et al.  Agricultural Benefits for Senegal River Basin , 1985 .

[21]  Sašo Džeroski,et al.  Learning population dynamics models from data and domain knowledge , 2003 .

[22]  Vijay P. Singh,et al.  Hydrological Simulation Program - Fortran (HSPF). , 1995 .

[23]  Dean P. Holzworth,et al.  Simplifying environmental model reuse , 2010, Environ. Model. Softw..

[24]  W. Russell Hamon Estimating Potential Evapotranspiration , 1960 .

[25]  Andrea Emilio Rizzoli,et al.  Modelling with knowledge: A review of emerging semantic approaches to environmental modelling , 2009, Environ. Model. Softw..

[26]  Douglas A. Haith,et al.  GENERALIZED WATERSHED LOADING FUNCTIONS FOR STREAM FLOW NUTRIENTS , 1987 .

[27]  Soroosh Sorooshian,et al.  Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration , 1999 .

[28]  Pat Langley,et al.  Inducing Hierarchical Process Models in Dynamic Domains , 2005, AAAI.

[29]  Sašo Džeroski,et al.  Constructing a library of domain knowledge for automated modelling of aquatic ecosystems , 2006 .

[30]  Jin Teng,et al.  An integrated modelling framework for regulated river systems , 2013, Environ. Model. Softw..

[31]  Douglas A. Haith An Event-based Procedure for Estimating Monthly Sediment Yields , 1985 .

[32]  Sašo Džeroski,et al.  The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems , 2012 .

[33]  George H. Leavesley,et al.  A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modelling , 2002 .

[34]  Richard A. Smith,et al.  Section 3. The SPARROW Surface Water-Quality Model: Theory, Application and User Documentation , 2006 .

[35]  Sašo Džeroski,et al.  Application of automated model discovery from data and expert knowledge to a real-world domain: Lake Glumsø , 2008 .