Multiscale geometric analysis for 3D catalogs

We have developed tools for analysis of 3D volumetric data which allow sensitive characterizations of filamentary structures in 3D point clouds. These tools rapidly compute multiscale X-ray transforms of the data volume. Subcubes of varying locations and scales are extracted from the data volume and each is analyzed by integrating along a strategically chosen set of line segments covering all different orientations. The underlying motivation is that point clouds with different degrees of filamentarity will lead to multiscale X-ray coefficients having different distributions when viewed at the right scale. The multiscale approach guarantees that information from all scales is available; by extracting the information from the transform in a statistically appropriate fashion, we can sensitively resolve differences in details of the filamentarity. We will describe the algorithm and the results of comparing different simulated galaxy distributions.

[1]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[2]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[3]  Masahiro Morikawa,et al.  Scaling analysis of galaxy distribution in the Las Campanas Redshift Survey data , 2001 .

[4]  Szalay,et al.  A Comparison of Estimators for the Two-Point Correlation Function. , 1999, The Astrophysical journal.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Huan Lin,et al.  Large-scale galaxy distribution in the Las Campanas Redshift Survey , 2001 .

[7]  Martin Kerscher,et al.  Statistical Analysis of Large-Scale Structure in the Universe , 1999 .

[8]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[9]  R. van de Weygaert,et al.  Clustering paradigms and multifractal measures , 1990 .

[10]  A. Bijaoui,et al.  Objective Detection of Voids and High-Density Structures in the First CfA Redshift Survey Slice , 1993 .

[11]  P. J. E. Peebles The Galaxy and Mass N-Point Correlation Functions: a Blast from the Past , 2001 .

[12]  Guinevere Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1999 .

[13]  Enn Saar,et al.  Wavelet analysis of the multifractal character of the galaxy distribution , 1993 .

[14]  Leo G. Krzewina,et al.  Minimal spanning tree statistics for the analysis of large-scale structure , 1996 .

[15]  A. J. Baddeley,et al.  A non-parametric measure of spatial interaction in point patterns , 1996, Advances in Applied Probability.

[16]  Martin Kerscher,et al.  The geometry of second-order statistics - biases in common estimators , 1998, astro-ph/9811300.

[17]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe — III. Mock redshift surveys , 1998, astro-ph/9812009.

[18]  David L. Donoho,et al.  Fast X-Ray and Beamlet Transforms for Three-Dimensional Data , 2002 .

[19]  E. Escalera,et al.  New evidence for subclustering in the Coma cluster using the wavelet analysis , 1992 .

[20]  A. Szalay,et al.  A New Class of Estimators for the N-Point Correlations , 1997, astro-ph/9704241.

[21]  Sophie Maurogordato,et al.  Void Probabilities in the Galaxy Distribution: Scaling and Luminosity Segregation , 1987 .

[22]  T. Buchert,et al.  Robust Morphological Measures for Large-Scale Structure in the Universe , 1993 .

[23]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[24]  Dietrich Stoyan,et al.  Comparing Estimators of the Galaxy Correlation Function , 1999 .

[25]  S. P. BhavsarR.J. Splinter,et al.  THE SUPERIORITY OF THE MINIMAL SPANNING TREE IN PERCOLATION ANALYSES OF COSMOLOGICAL DATA SETS , 1996, astro-ph/9605179.

[26]  Yasushi Suto,et al.  Three-Dimensional Genus Statistics of Galaxies in the SDSS Early Data Release , 2002 .

[27]  David L. Donoho,et al.  WaveLab and Reproducible Research , 1995 .

[28]  M. Gambera,et al.  Substructure recovery by three-dimensional discrete wavelet transforms , 1999, astro-ph/9908066.

[29]  P. J. E. Peebles,et al.  A computer model universe - Simulation of the nature of the galaxy distribution in the Lick catalog , 1978 .