29Si cross-polarization magic-angle spinning NMR spectroscopy––an efficient tool for quantification of thaumasite in cement-based materials

[1]  D. Macphee,et al.  XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite , 2002 .

[2]  John Bensted,et al.  Structure and Performance of Cements , 2001 .

[3]  A. Atkinson,et al.  Micro-Raman spectroscopy of thaumasite , 2001 .

[4]  S. J. Barnett,et al.  Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12·26H2O, and thaumasite, Ca3SiSO4CO3(OH)6·12H2O , 2000 .

[5]  N. Buenfeld,et al.  Microstructural identification of thaumasite in concrete by backscattered electron imaging at low vacuum , 2000 .

[6]  R. Swamy,et al.  Thaumasite formation in Portland-limestone cement pastes , 1999 .

[7]  M. Gaze The effects of varying gypsum content on thaumasite formation in a cement:Lime:Sand mortar at 5 °C , 1997 .

[8]  H. J. Jakobsen,et al.  Quantification of thaumasite in cementitious materials by 29 Si { 1 H} cross-polarization magic-angle spinning NMR spectroscopy , 1995 .

[9]  N. Crammond Quantitative X-ray diffraction analysis of ettringite, thaumasite and gypsum in concretes and mortars , 1985 .

[10]  Michael Mehring,et al.  Principles of high-resolution NMR in solids , 1982 .

[11]  É. Lippmaa,et al.  Structural studies of silicates by solid-state high-resolution silicon-29 NMR , 1980 .

[12]  J. Bensted Uses of Raman Spectroscopy in Cement Chemistry , 1976 .

[13]  A. Pines,et al.  Proton‐Enhanced Nuclear Induction Spectroscopy. A Method for High Resolution NMR of Dilute Spins in Solids , 1972 .

[14]  H. Taylor,et al.  Crystal structure of thaumasite, [Ca3Si(OH)6.12H2O](SO4)(CO3) , 1971 .

[15]  H. Taylor,et al.  Crystal Structure of Ettringite , 1968, Nature.