Hypothesis: Chemotaxis in Escherichia coli Results from Hyperstructure Dynamics

Large assemblies of different molecules and macromolecules,termed hyper structures, have been proposed to be the units of an intermediate level of organisation in bacteria. Here we propose a model for chemotaxis in Escherichia coli in which (1) the size and functioning of the chemo-signalling hyper-structure depends not only on the protein constituents but also on cardiolipin and calcium,(2) the coupled transcription, translation and insertion of nascent proteins (transertion) is a potentially powerful influence in determining the size of the chemo-signalling hyper-structure and therefore in affecting its function, and (3) a single transertional hyper-structure is jointly responsible for the synthesis of chemo-signalling and flagellar proteins so as to divorce the size of the chemo-signalling hyper-structure from the transertion of its constituents.

[1]  J. Stock,et al.  A receptor scaffold mediates stimulus-response coupling in bacterial chemotaxis. , 1999, Cell calcium.

[2]  G. L. Hazelbauer,et al.  High- and low-abundance chemoreceptors in Escherichia coli: differential activities associated with closely related cytoplasmic domains , 1997, Journal of bacteriology.

[3]  M. Surette,et al.  Receptor‐mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis , 1997, The EMBO journal.

[4]  J. Adler,et al.  Inhibition of Escherichia coli chemotaxis by omega-conotoxin, a calcium ion channel blocker , 1993, Journal of bacteriology.

[5]  J. Maddock,et al.  Proteomic screening and identification of differentially distributed membrane proteins in Escherichia coli , 2004, Molecular microbiology.

[6]  V. Norris Division in bacteria is determined by hyperstructure dynamics and membrane domains , 2001 .

[7]  G L Hazelbauer,et al.  Efficient adaptational demethylation of chemoreceptors requires the same enzyme-docking site as efficient methylation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Maurice Demarty,et al.  Hypothesis: hyperstructures regulate initiation in Escherichia coli and other bacteria. , 2002, Biochimie.

[9]  S. Hiraga,et al.  Different localization of SeqA‐bound nascent DNA clusters and MukF–MukE–MukB complex in Escherichia coli cells , 2001, Molecular microbiology.

[10]  R. Ramakrishnan,et al.  Acetylation at Lys-92 enhances signaling by the chemotaxis response regulator protein CheY. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  G. Ordal Calcium ion regulates chemotactic behaviour in bacteria , 1977, Nature.

[12]  P. Dommersnes,et al.  The many-body problem for anisotropic membrane inclusions and the self-assembly of "saddle" defects into an "egg carton". , 2002, Biophysical journal.

[13]  Frederick W. Dahlquist,et al.  Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway , 1992, Cell.

[14]  M. Welch,et al.  Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM. , 1994, Biochemistry.

[15]  S. Leibler,et al.  An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. , 2000, Science.

[16]  G. Wadhams,et al.  Identification and localization of a methyl‐accepting chemotaxis protein in Rhodobacter sphaeroides , 2000, Molecular microbiology.

[17]  I. Fishov,et al.  Coexistence of Domains with Distinct Order and Polarity in Fluid Bacterial Membranes¶ , 2002 .

[18]  S. Subramaniam,et al.  Three-Dimensional Electron Microscopic Imaging of Membrane Invaginations in Escherichia coli Overproducing the Chemotaxis Receptor Tsr , 2004, Journal of bacteriology.

[19]  J. S. Parkinson,et al.  Methylation segments are not required for chemotactic signalling by cytoplasmic fragments of Tsr, the methyl‐accepting serine chemoreceptor of Escherichia coli , 1996, Molecular microbiology.

[20]  Ronald D Vale,et al.  Interactions of the chemotaxis signal protein CheY with bacterial flagellar motors visualized by evanescent wave microscopy , 2000, Current Biology.

[21]  H. Berg,et al.  Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions , 2000, Molecular microbiology.

[22]  J. Killian,et al.  Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. , 1994, Biochimica et biophysica acta.

[23]  L. Serrano,et al.  Towards understanding a molecular switch mechanism: thermodynamic and crystallographic studies of the signal transduction protein CheY. , 2000, Journal of molecular biology.

[24]  L. Shapiro,et al.  Differential localization of membrane receptor chemotaxis proteins in the Caulobacter predivisional cell. , 1986, Journal of molecular biology.

[25]  H. Niki,et al.  Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. , 1998, Genes & development.

[26]  A. Bren,et al.  How Signals Are Heard during Bacterial Chemotaxis: Protein-Protein Interactions in Sensory Signal Propagation , 2000, Journal of bacteriology.

[27]  L. Tisa Interaction of ω-conotoxin and the membrane calcium transport system of Escherichia coli , 2000 .

[28]  H. Riezman,et al.  Transcription and translation initiation frequencies of the Escherichia coli lac operon. , 1977, Journal of molecular biology.

[29]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[30]  K. Matsumoto,et al.  Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli , 1997, Journal of bacteriology.

[31]  R. Weis,et al.  Oligomerization of the cytoplasmic fragment from the aspartate receptor of Escherichia coli. , 1992, Biochemistry.

[32]  G. Ordal,et al.  The conserved cytoplasmic module of the transmembrane chemoreceptor McpC mediates carbohydrate chemotaxis in Bacillus subtilis , 2003, Molecular microbiology.

[33]  J C Vincent,et al.  Hypothesis: hyperstructures regulate bacterial structure and the cell cycle. , 1999, Biochimie.

[34]  Maurice Demarty,et al.  Modelling Bacterial Hyperstructures with Cellular Automata , 2006 .

[35]  R. Weis,et al.  Covalent Modification Regulates Ligand Binding to Receptor Complexes in the Chemosensory System of Escherichia coli , 2000, Cell.

[36]  M. Manson,et al.  Chimeric Chemoreceptors in Escherichia coli: Signaling Properties of Tar-Tap and Tap-Tar Hybrids , 1998, Journal of bacteriology.

[37]  D. Bray,et al.  Receptor clustering as a cellular mechanism to control sensitivity , 1998, Nature.

[38]  M. Surette,et al.  Bacterial Chemotaxis: The motor connection , 1994, Current Biology.

[39]  Kenneth E. Sanderson,et al.  GENETIC MAP OF SALMONELLA TYPHIMURIUM , 1965 .

[40]  Nanne Nanninga,et al.  Escherichia coli Minicell Membranes Are Enriched in Cardiolipin , 2001, Journal of bacteriology.

[41]  J. Wang,et al.  Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I , 1993, Journal of bacteriology.

[42]  P. Gardina,et al.  Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Zusman,et al.  The pss and psd genes are required for motility and chemotaxis in Escherichia coli , 1993, Journal of bacteriology.

[44]  M. Manson,et al.  Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease , 1986, Nature.

[45]  A. Zaritsky,et al.  Transcription‐ and translation‐dependent changes in membrane dynamics in bacteria: testing the transertion model for domain formation , 1999, Molecular microbiology.

[46]  M. Eisenbach,et al.  Co-regulation of acetylation and phosphorylation of CheY, a response regulator in chemotaxis of Escherichia coli. , 2004, Journal of molecular biology.

[47]  Stephan C. Schuster,et al.  Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance , 1993, Nature.

[48]  U. Alon,et al.  Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria , 2001, Science.

[49]  J. Weiner,et al.  Overproduction of fumarate reductase in Escherichia coli induces a novel intracellular lipid-protein organelle , 1984, Journal of bacteriology.

[50]  K. Hughes,et al.  Translation/Secretion Coupling by Type III Secretion Systems , 2000, Cell.

[51]  H. Kuthan Self-organisation and orderly processes by individual protein complexes in the bacterial cell. , 2001, Progress in biophysics and molecular biology.

[52]  Tohru Mizushima,et al.  Acidic phospholipids inhibit the DNA‐binding activity of DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli , 2002, Molecular microbiology.

[53]  C. Kocks,et al.  Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. , 1993, Journal of cell science.

[54]  Lucy Shapiro,et al.  Cell Cycle–Dependent Polar Localization of an Essential Bacterial Histidine Kinase that Controls DNA Replication and Cell Division , 1999, Cell.

[55]  L. Shapiro,et al.  Polar localization of a bacterial chemoreceptor. , 1992, Genes & development.

[56]  M. Saier,et al.  Metabolite‐induced metabolons: the activation of transporter–enzyme complexes by substrate binding , 1999, Molecular microbiology.

[57]  M. Bogdanov,et al.  Phospholipid‐assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease , 1998, The EMBO journal.

[58]  L. Shapiro,et al.  Polar location of the chemoreceptor complex in the Escherichia coli cell. , 1993, Science.

[59]  J. S. Parkinson,et al.  Collaborative signaling by mixed chemoreceptor teams in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Camille Ripoll,et al.  Ion condensation and signal transduction. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[61]  H V Westerhoff,et al.  Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces? , 1995, FEMS microbiology letters.

[62]  Dennis Bray,et al.  Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis , 2000, Nature Cell Biology.

[63]  B. Bachmann,et al.  Linkage map of Escherichia coli K-12, edition 8 , 1990, Microbiological reviews.

[64]  J. Stock,et al.  Purification and characterization of the S-adenosylmethionine:glutamyl methyltransferase that modifies membrane chemoreceptor proteins in bacteria. , 1987, The Journal of biological chemistry.

[65]  J. Adler,et al.  Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Uri Alon,et al.  Robust amplification in adaptive signal transduction networks , 2001 .

[67]  J. Maddock,et al.  Differences in the polar clustering of the high- and low-abundance chemoreceptors of Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  B. Deurs,et al.  Physiological and morphological effects of overproduction of membrane‐bound ATP synthase in Escherichia coli K‐12. , 1984, The EMBO journal.

[69]  D. Koshland,et al.  Site-directed cross-linking. Establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis. , 1988, The Journal of biological chemistry.

[70]  C. Woldringh The role of co‐transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation , 2002, Molecular microbiology.

[71]  F. Neidhardt,et al.  Linkage Map of Escherichia coli K-12 , 1987 .

[72]  V. Norris,et al.  Hypothesis: chromosome separation in Escherichia coli involves autocatalytic gene expression, transertion and membrane‐domain formation , 1995, Molecular microbiology.

[73]  D. Koshland,et al.  Tuning the responsiveness of a sensory receptor via covalent modification. , 1991, The Journal of biological chemistry.

[74]  M. Bogdanov,et al.  Monoglucosyldiacylglycerol, a Foreign Lipid, Can Substitute for Phosphatidylethanolamine in Essential Membrane-associated Functions in Escherichia coli* , 2004, Journal of Biological Chemistry.

[75]  J. S. Parkinson,et al.  Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor , 1994, Journal of bacteriology.

[76]  R. Bourret,et al.  Throwing the switch in bacterial chemotaxis. , 1999, Trends in microbiology.

[77]  Itzhak Fishov,et al.  Visualization of membrane domains in Escherichia coli , 1999, Molecular microbiology.

[78]  F. Dahlquist,et al.  Sensory adaptation in bacterial chemotaxis: regulation of demethylation , 1985, Journal of bacteriology.

[79]  R. Bourret,et al.  Conformational coupling in the chemotaxis response regulator CheY , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  J. Maddock,et al.  Clustering of the Chemoreceptor Complex inEscherichia coli Is Independent of the Methyltransferase CheR and the Methylesterase CheB , 1999, Journal of bacteriology.

[81]  W. Dowhan,et al.  Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. , 1991, The Journal of biological chemistry.

[82]  O. Bârzu,et al.  Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement , 1993, Infectious agents and disease.

[83]  J. S. Parkinson,et al.  Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[84]  B. Witholt,et al.  Co-translational insertion of envelope proteins: theoretical consideration and implications. , 1982, Annales de microbiologie.

[85]  E. Lin,et al.  The CpxRA Signal Transduction System ofEscherichia coli: Growth-Related Autoactivation and Control of Unanticipated Target Operons , 1999, Journal of bacteriology.

[86]  I. Fishov,et al.  Coexistence of Domains with Distinct Order and Polarity in Fluid Bacterial Membranes ¶ , 2002, Photochemistry and photobiology.

[87]  M Welch,et al.  Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[88]  J. Lengeler,et al.  Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. , 1999, Molecular biology of the cell.

[89]  I. Fishov,et al.  Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane. A study with pyrene‐labelled phospholipids , 2003, Molecular microbiology.

[90]  P. Gardina,et al.  A mechanism for simultaneous sensing of aspartate and maltose by the Tar chemoreceptor of Escherichia coli , 1998, Molecular microbiology.

[91]  T. Duke,et al.  Heightened sensitivity of a lattice of membrane receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Antoine Danchin,et al.  A strand‐specific model for chromosome segregation in bacteria , 2003, Molecular microbiology.

[93]  A. Grossman,et al.  Localization of bacterial DNA polymerase: evidence for a factory model of replication. , 1998, Science.

[94]  J. Adler,et al.  Chemotactic properties of Escherichia coli mutants having abnormal Ca2+ content , 1995, Journal of bacteriology.

[95]  T. Duke,et al.  Conformational spread: the propagation of allosteric states in large multiprotein complexes. , 2004, Annual review of biophysics and biomolecular structure.

[96]  P. Freestone,et al.  Calcium signalling in bacteria , 1996, Journal of bacteriology.

[97]  H. Berg,et al.  Functional interactions between receptors in bacterial chemotaxis , 2004, Nature.

[98]  A. Campbell,et al.  Free calcium transients in chemotactic and non-chemotactic strains of Escherichia coli determined by using recombinant aequorin. , 1995, The Biochemical journal.

[99]  M. Saier,et al.  Unique Regulation of Carbohydrate Chemotaxis in Bacillus subtilis by the Phosphoenolpyruvate-Dependent Phosphotransferase System and the Methyl-Accepting Chemotaxis Protein McpC , 1998, Journal of bacteriology.

[100]  William Dowhan,et al.  Visualization of Phospholipid Domains inEscherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange , 2000, Journal of bacteriology.

[101]  J. Adler,et al.  Cytoplasmic free-Ca2+ level rises with repellents and falls with attractants in Escherichia coli chemotaxis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[102]  S. Khan,et al.  Determinants of chemotactic signal amplification in Escherichia coli. , 2001, Journal of molecular biology.

[103]  J. E. Cabrera,et al.  The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues , 2003, Molecular microbiology.

[104]  S. Porwollik,et al.  Sensing wetness: a new role for the bacterial flagellum , 2005, The EMBO journal.

[105]  J. Adler,et al.  Calcium ions are involved in Escherichia coli chemotaxis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[106]  M. Homma,et al.  Dual Recognition of the Bacterial Chemoreceptor by Chemotaxis-specific Domains of the CheR Methyltransferase* , 2002, The Journal of Biological Chemistry.

[107]  William Dowhan,et al.  Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. , 2004, Biochimica et biophysica acta.

[108]  Dennis Bray,et al.  Bacterial chemotaxis and the question of gain , 2002, Proceedings of the National Academy of Sciences of the United States of America.